
Package ‘gesso’
October 13, 2022

Type Package

Title Hierarchical GxE Interactions in a Regularized Regression Model

Version 1.0.2

Date 2021-11-28

Author Natalia Zemlianskaia

Maintainer Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>

Description The method focuses on a single environmental exposure and induces
a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms
in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.

License MIT + file LICENSE

Imports Rcpp (>= 1.0.3), Matrix, bigmemory, methods

Depends dplyr, R (>= 3.5)

Suggests glmnet, testthat, knitr, rmarkdown, ggplot2

LinkingTo Rcpp, RcppEigen, RcppThread, BH, bigmemory

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-11-30 07:30:02 UTC

R topics documented:
gesso-package . 2
data.gen . 2
gesso.coef . 4
gesso.coefnum . 5
gesso.cv . 6
gesso.fit . 7
gesso.predict . 9
selection.metrics . 10

Index 12

1

https://arxiv.org/abs/2103.13510

2 data.gen

gesso-package Hierarchical GxE Interactions in a Regularized Regression Model

Description

The method focuses on a single environmental exposure and induces a main-effect-before-interaction
hierarchical structure for the joint selection of interaction terms in a regularized regression model.
For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.

Author(s)

Natalia Zemlianskaia

Maintainer: Natalia Zemlianskaia <natasha.zemlianskaia@gmail.com>

References

"A Scalable Hierarchical Lasso for Gene-Environment Interactions", Natalia Zemlianskaia, W.James
Gauderman, Juan Pablo Lewinger https://arxiv.org/abs/2103.13510

data.gen Data Generation

Description

Generates genotypes data matrix G (sample_size by p), vector of environmental measurments E,
and an outcome vector Y of size sample_size. Simulates training, validation, and test datasets.

Usage

data.gen(sample_size = 100, p = 20, n_g_non_zero = 15, n_gxe_non_zero = 10,
family = "gaussian", mode = "strong_hierarchical",
normalize = FALSE, normalize_response = FALSE,
seed = 1, pG = 0.2, pE = 0.3,
n_confounders = NULL)

Arguments

sample_size sample size of the data

p total number of main effects

n_g_non_zero number of non-zero main effects to generate

n_gxe_non_zero number of non-zero interaction effects to generate

family "gaussian" for continous outcome Y and "binomial" for binary 0/1 outcome

data.gen 3

mode either "strong_hierarchical", "hierarchical", or "anti_hierarchical". In the strong
hierarchical mode the hierarchical structure is maintained (beta_g = 0 then
beta_gxe = 0) and also |beta_g| >= |beta_gxe|. In the hierarchical mode the hier-
archical structure is maintained, but |beta_G| < |beta_gxe|. In the anti_hierarchical
mode the hierarchical structure is violated (beta_g = 0 then beta_gxe != 0).

normalize TRUE to normalize matrix G and vector E
normalize_response

TRUE to normalize vector Y

pG genotypes prevalence, value from 0 to 1

pE environment prevalence, value from 0 to 1

seed random seed

n_confounders number of confounders to generate, either NULL or >1

Value

A list of simulated datasets and generating coefficients

G_train, G_valid, G_test

generated genotypes matrices
E_train, E_valid, E_test

generated vectors of environmental values
Y_train, Y_valid, Y_test

generated outcome vectors
C_train, C_valid, C_test

generated confounders matrices
GxE_train, GxE_valid, GxE_test

generated GxE matrix

Beta_G main effect coefficients vector

Beta_GxE interaction coefficients vector

beta_0 intercept coefficient value

beta_E environment coefficient value

Beta_C confounders coefficient values
index_beta_non_zero, index_beta_gxe_non_zero, index_beta_zero, index_beta_gxe_zero

inner data generation variables

n_g_non_zero number of non-zero main effects generated

n_gxe_non_zero number of non-zero interactions generated
n_total_non_zero

total number of non-zero variables

SNR_g signal-to-noise ratio for the main effects

SNR_gxe signal-to-noise ratio for the interactions
family, p, sample_size, mode, seed

input simulation parameters

4 gesso.coef

Examples

data = data.gen(sample_size=100, p=100)
G = data$G_train; GxE = data$GxE_train
E = data$E_train; Y = data$Y_train

gesso.coef Get model coefficients

Description

A function to obtain coefficients from the model fit object corresponding to the desired pair of
tuning parameters lambda = (lambda_1, lambda_2).

Usage

gesso.coef(fit, lambda)

Arguments

fit model fit object obtained either by using function gesso.fit or gesso.cv

lambda a pair of tuning parameters organized in a tibble (ex: lambda = tibble(lambda_1=grid[1],
lambda_2=grid[1]))

Value

A list of model coefficients corresponding to lambda values of tuning parameters

beta_0 estimated intercept value

beta_e estimated environmental coefficient value

beta_g a vector of estimated main effect coefficients

beta_c a vector of estimated confounders coefficients

beta_gxe a vector of estimated interaction coefficients

Examples

data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train, grid_size=20,

parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g

gesso.coefnum 5

gesso.coefnum Get model coefficients with specified number of non-zero interactions

Description

A function to obtain coefficients with target_b_gxe_non_zero specified to control the desired
sparsity of interactions in the model.

Usage

gesso.coefnum(cv_model, target_b_gxe_non_zero, less_than = TRUE)

Arguments

cv_model cross-validated model fit object obtained by using function gesso.cv

target_b_gxe_non_zero

number of non-zero interactions we want to inlcude in the model

less_than TRUE if we want to control a number of at most non-zero interactions, FALSE if
we want to control a number of at least non-zero interactions

Value

A list of model coefficients corresponding to the best model that contains at most or at least
target_b_gxe_non_zero non-zero interaction terms.

The target model is selected based on the averaged cross-validation (cv) results: for each pair of
parameters lambda=(lambda_1, lambda_2) in the grid and each cv fold we obtain a number of non-
zero estimated interaction terms, then average cv results by lambda and choose the tuning parame-
ters corresponding to the minimum average cv loss that have at most or at least target_b_gxe_non_zero
non-zero interaction terms. Returned coefficients are obtained by fitting the model on the full data
with the selected tuning parameters.

Note that the number of estimated non-zero interactions will only approximately reflect the numbers
obtained on cv datasets.

beta_0 estimated intercept value

beta_e estimated environmental coefficient value

beta_g a vector of estimated main effect coefficients

beta_gxe a vector of estimated interaction coefficients

beta_c a vector of estimated confounders coefficients

Examples

data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
model_coefficients = gesso.coefnum(model, 5)
gxe_coefficients = model_coefficients$beta_gxe; sum(gxe_coefficients!=0)

6 gesso.cv

gesso.cv Cross-Validation

Description

Performs nfolds-fold cross-validation to tune hyperparmeters lambda_1 and lambda_2 for the
gesso model.

Usage

gesso.cv(G, E, Y, C = NULL, normalize = TRUE, normalize_response = FALSE, grid = NULL,
grid_size = 20, grid_min_ratio = NULL, alpha = NULL, family = "gaussian",
type_measure = "loss", fold_ids = NULL, nfolds = 4,
parallel = TRUE, seed = 42, tolerance = 1e-3, max_iterations = 5000,
min_working_set_size = 100, verbose = TRUE)

Arguments

G matrix of main effects of size n x p, variables organized by columns

E vector of environmental measurments

Y outcome vector. Set family="gaussian" for the continuous outcome and family="binomial"
for the binary outcome with 0/1 levels

C matrix of confounders of size n x m, variables organized by columns

normalize TRUE to normalize matrix G and vector E
normalize_response

TRUE to normalize vector Y (for family="gaussian")

grid grid sequence for tuning hyperparameters, we use the same grid for lambda_1
and lambda_2

grid_size specify grid_size to generate grid automatically. Grid is generated by cal-
culating max_lambda from the data (smallest lambda such that all the coeffi-
cients are zero). min_lambda is calculated as a product of max_lambda and
grid_min_ratio. The program then generates grid_size values equidistant
on the log10 scale from min_lambda to max_lambda

grid_min_ratio parameter to determine min_lambda (smallest value for the grid of lambdas),
default is 0.1 for p > n, 0.01 otherwise

alpha if NULL independent 2D grid is used for (lambda_1, lambda_2), else 1D grid is
used where lambda_2 = alpha * lambda_1, i.e. (lambda_1, alpha * lambda_1)

family "gaussian" for continuous outcome and "binomial" for binary

type_measure loss to use for cross-validation. Specity type_measure="loss" for neative log
likelihood or type_measure="auc" for AUC (for family="binomial" only)

fold_ids option to input custom folds assignments

tolerance tolerance for the dual gap convergence criterion

max_iterations maximum number of iterations

gesso.fit 7

min_working_set_size

minimum size of the working set

nfolds number of cross-validation splits

parallel TRUE to enable parallel cross-validation

seed set random seed to control random folds assignments

verbose TRUE to print messages

Value

A list of objects

cv_result a tibble with cross-validation results: averaged across folds loss and the number
of non-zero coefficients for each value of (lambda_1, lambda_2) path. Could
be used for custom parameters tuning (ex: select (lambda_1, lambda_2) with a
sertain number of non-zero main effects and/or a sertain number of interactions).

• mean_loss averaged across folds loss value, vector of size lambda_1*lambda_2
• mean_beta_g_nonzero averaged across folds number of non-zero main ef-

fects, vector of size lambda_1*lambda_2
• mean_beta_gxe_nonzero averaged across folds number of non-zero inter-

actions, vector of size lambda_1*lambda_2
• lambda_1 lambda_1 pass, decreasing
• lambda_2 lambda_2 pass, oscillating

lambda_min a tibble of optimal (lambda_1, lambda_2) values, tuning parameter values that
give minimum cross-validation loss (mean_loss)

fit list, return of the function gesso.fit on the full data

grid vector of values used for hyperparameters tuning

full_cv_result inner variables

Examples

data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train,

grid_size=20, parallel=TRUE, nfolds=3)
gxe_coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)$beta_g

gesso.fit gesso fit

Description

Fits gesso model over the two dimentional grid of hyperparmeters lambda_1 and lambda_2, returns
estimated coefficients for each pair of hyperparameters.

8 gesso.fit

Usage

gesso.fit(G, E, Y, C = NULL, normalize = TRUE, normalize_response = FALSE,
grid = NULL, grid_size = 20, grid_min_ratio = NULL,
alpha = NULL, family = "gaussian", weights = NULL,
tolerance = 1e-3, max_iterations = 5000,
min_working_set_size = 100,
verbose = FALSE)

Arguments

G matrix of main effects of size n x p, variables organized by columns

E vector of environmental measurments

Y outcome vector. Set family="gaussian" for the continuous outcome and family="binomial"
for the binary outcome with 0/1 levels

C matrix of confounders of size n x m, variables organized by columns

normalize TRUE to normalize matrix G and vector E
normalize_response

TRUE to normalize vector Y

grid grid sequence for tuning hyperparameters, we use the same grid for lambda_1
and lambda_2

grid_size specify grid_size to generate grid automatically. Grid is generated by cal-
culating max_lambda from the data (smallest lambda such that all the coeffi-
cients are zero). min_lambda is calculated as a product of max_lambda and
grid_min_ratio. The program then generates grid_size values equidistant
on the log10 scale from min_lambda to max_lambda

grid_min_ratio parameter to determine min_lambda (smallest value for the grid of lambdas),
default is 0.1 for p > n, 0.01 otherwise

alpha if NULL independent 2D grid is used for (lambda_1, lambda_2), else 1D grid is
used where lambda_2 = alpha * lambda_1, i.e. (lambda_1, alpha * lambda_1)

family "gaussian" for continuous outcome and "binomial" for binary

tolerance tolerance for the dual gap convergence criterion

max_iterations maximum number of iterations
min_working_set_size

minimum size of the working set

weights inner fitting parameter

verbose TRUE to print messages

Value

A list of estimated coefficients and other model fit metrics for each pair of hyperparameters (lambda_1,
lambda_2)

beta_0 vector of estimated intercept values of size lambda_1*lambda_2

beta_e vector of estimated environment coefficients of size lambda_1*lambda_2

gesso.predict 9

beta_g matrix of estimated main effects coefficients organized by rows, size (lambda_1*lambda_2)
by p

beta_gxe matrix of estimated interactions coefficients organized by rows, size (lambda_1*lambda_2)
by p

beta_c matrix of estimated confounders coefficients organized by rows, size (lambda_1*lambda_2)
by m, where m is the number of confounders

num_iterations number of iterations until convergence for each fit

working_set_size

maximum number of variables in the working set for each fit

has_converged 1 if the model converged within given max_iterations, 0 otherwise

objective_value

objective function (loss) value for each fit

beta_g_nonzero number of estimated non-zero main effects for each fit

beta_gxe_nonzero

number of estimated non-zero interactions for each fit

lambda_1 lambda_1 path values, decreasing

lambda_2 lambda_2 path values, oscillating

grid vector of values used for hyperparameters tuning

Examples

data = data.gen()
fit = gesso.fit(G=data$G_train, E=data$E_train, Y=data$Y_train, normalize=TRUE)
plot(fit$beta_g_nonzero, pch=19, cex=0.4,

ylab="num of non-zero features", xlab="lambdas path")
points(fit$beta_gxe_nonzero, pch=19, cex=0.4, col="red")

gesso.predict Predict new outcome vector

Description

Predict new outcome vector based on the new data and estimated model coefficients.

Usage

gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E,
beta_c=NULL, new_C=NULL, family = "gaussian")

10 selection.metrics

Arguments

beta_0 estimated intercept value
beta_e estimated environmental coefficient value
beta_g a vector of estimated main effect coefficients
beta_gxe a vector of estimated interaction coefficients
new_G matrix of main effects, variables organized by columns
new_E vector of environmental measurments
beta_c a vector of estimated confounders coefficients
new_C matrix of confounders, variables organized by columns
family set family="gaussian" for the continuous outcome and family="binomial"

for the binary outcome with 0/1 levels

Value

Returns a vector of predicted values

Examples

data = data.gen()
tune_model = gesso.cv(data$G_train, data$E_train, data$Y_train)
coefficients = gesso.coef(tune_model$fit, tune_model$lambda_min)
beta_0 = coefficients$beta_0; beta_e = coefficients$beta_e
beta_g = coefficients$beta_g; beta_gxe = coefficients$beta_gxe

new_G = data$G_test; new_E = data$E_test
new_Y = gesso.predict(beta_0, beta_e, beta_g, beta_gxe, new_G, new_E)
cor(new_Y, data$Y_test)^2

selection.metrics Selection metrics

Description

Calculates principal selection metrics for the binary zero/non-zero classification problem (sensitiv-
ity, specificity, precision, auc).

Usage

selection.metrics(true_b_g, true_b_gxe, estimated_b_g, estimated_b_gxe)

Arguments

true_b_g vector of true main effect coefficients
true_b_gxe vector of true interaction coefficients
estimated_b_g vector of estimated main effect coefficients
estimated_b_gxe

vector of estimated interaction coefficients

selection.metrics 11

Value

A list of principal selection metrics

b_g_non_zero number of non-zero main effects

b_gxe_non_zero number of non-zero interactions

mse_b_g mean squared error for estimation of main effects effect sizes

mse_b_gxe mean squared error for estimation of interactions effect sizes

sensitivity_g recall of the non-zero main effects

specificity_g recall of the zero main effects

precision_g precision with respect to non-zero main effects
sensitivity_gxe

recall of the non-zero interactions
specificity_gxe

recall of the zero interactions

precision_gxe precision with respect to non-zero interactions

auc_g area under the curve for zero/non-zero binary classification problem for main
effects

auc_gxe area under the curve for zero/non-zero binary classification problem for interac-
tions

Examples

data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
selection.metrics(data$Beta_G, data$Beta_GxE, g_coefficients, gxe_coefficients)

Index

∗ package
gesso-package, 2

data.gen, 2

gesso (gesso-package), 2
gesso-package, 2
gesso.coef, 4
gesso.coefnum, 5
gesso.cv, 6
gesso.fit, 7
gesso.predict, 9

selection.metrics, 10

12

	gesso-package
	data.gen
	gesso.coef
	gesso.coefnum
	gesso.cv
	gesso.fit
	gesso.predict
	selection.metrics
	Index

