Package 'gausscov'

March 19, 2024

Version 1.1.2

Date 2024-3-8
Title The Gaussian Covariate Method for Variable Selection
Author Laurie Davies [aut, cre]
Maintainer Laurie Davies pldavies44@cantab.net
Description The standard linear regression theory whether frequentist or Bayesian is based on an 'assumed (revealed?) truth' (John Tukey) attitude to models. This is reflected in the language of statistical inference which involves a concept of truth, for example confidence intervals, hypothesis testing and consistency. The motivation behind this package was to re-
move the word true from the theory and practice of linear regression and to replace it by approximation. The approximations considered are the least squares approximations. An approximation is called valid if it contains no irrelevant covariates. This is operationalized using the concept of a Gaussian P-value which is the probability that pure Gaussian noise is better in term of least squares than the covariate. The precise definition given in the paper, it is intuitive and requires only four simple equations. Its overwhelming advantage compared with a standard F P-value is that is is exact and valid whatever the data. In contrast F Pvalues are only valid for specially designed simulations. Given this a valid approximation is one where all the Gaussian P-values are less than a threshold p0 specified by the statistician, in this package with the default value 0.01 . This approximations approach is not only much simpler it is overwhelmingly better than the standard model based approach. The will be demonstrated using six real data sets, four from high dimensional regression and two from vector autoregression. The simplicity and superiority of Gaussian P-values derive from their universal exactness and validity. This is in complete contrast to standard F Pvalues which are valid only for carefully designed simulations. The function f1st is the most important function. It is a greedy forward selection procedure which results in either just one or no approximations which may how-
ever not be valid. If the size is less than than a threshold with default value 21 then an all subset procedure is called which returns the best valid subset. A good default start is $\mathrm{f} 1 \mathrm{st}(\mathrm{y}, \mathrm{x}, \mathrm{kmn}=15)$ The best function for returning multiple approximations is f 3 st which repeatedly calls f1st. For more information see the web site below and the accompanying papers: L. Davies and L. Duembgen, '`Covariate Selection Based on a Model-free Approach to Linear Regression with Exact Probabilities", 2022, arxiv:2202.01553. L. Davies, "'An Approximation Based Theory of Linear Regression", 2024, arxiv:2402.09858.
LazyData true

License GPL-3

Depends R (>=3.5.0), stats
Encoding UTF-8
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-03-19 16:20:02 UTC

R topics documented:

abcq . 2
boston . 3
decode . 4
f1st . 4
f2st . 5
f3st . 6
f3sti . 7
fasb . 8
fgeninter . 9
fgentrig . 9
fgr1st . 10
flag . 11
fpval . 11
fundr . 12
leukeia . 13
mel-temp . 13
redwine . 14
simgpval . 14
snspt . 15
vardata . 15
Index 16
abcq American Business Cycle

Description

The 22 variables are quarterly data from 1919-1941 and 1947-1983 of the variables GNP72, CPRATE, CORPYIELD, M1, M2, BASE, CSTOCK, WRICE67, PRODUR72, NONRES72, IRES72, DBUSI72, CDUR72, CNDUR72, XPT72, MPT72, GOVPUR72,NCSPDE72, NCSBS72, NCSCON72, CCSPDE72 and CCSBS72.

Usage

abcq

Format

A matrix of size 240×22

Source

http://data.nber.org/data/abc/
boston Boston data

Description

This data set is part of the MASS package. The 14 columns are:
crim per capita crime rate by town
zn proportion of residential land zoned for lots over $25.000 \mathrm{sq} . \mathrm{ft}$.
indus proportion of non-residential business acres per town
chas Charles River dummy variable ($=1$ if tract bounds rive; 0 otherwise)
nox nitrogen oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted mean of distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per $\$ 10,000$
ptration pupil-teacher ration by town
black $100(\mathrm{Bk}-0.63)^{\wedge} 2$ where Bk is the proportion of blacks by town
Istat lower status of the population (percent)
medv median value of owner occupies homes in $\$ 1000$ s.

Usage

boston

Format

A 506×14 matrix.

Source

R package MASS https://cran.r-project.org/web/packages/available_packages_by_name.html

References

MASS Support Functions and Datasets for Venables and Ripley's MASS

Decodes the number of a subset selected by fasb.R to give the covariates

Description

Decodes the number of a subset selected by fasb.R to give the covariates

Usage

decode(ns, k)

Arguments

ns
The number of the subset
k
The number of covariates

Value

ind The list of covariates
set A binary vector giving the covariates

Examples

$a<-$ decode $(19,8)$
f1st Stepwise selection of covariates

Description

Stepwise selection of covariates

Usage

f1st ($y, x, p 0=0.01, k m n=0, k m x=0, k e x=0, m x=21$, sub=T, inr=T, $x i n r=F, q q=-1$)

Arguments

$y \quad$ Dependent variable
$x \quad$ Covariates
p0 The P-value cut-off
kmn The minimum number of included covariates irrespective of cut-off P -value
kmx The maximum number of included covariates irrespective of cut-off P -value.

kex	The excluded covariates
$m x$	The maximum number covariates for an all subset search
sub	Logical if TRUE best subset selected
inr	Logical if TRUE include intercept if not present
xinr	Logical if TRUE intercept already present qq
	The number of covariates to choose from. If $q q=-1 ~ t h e ~ n u m b e r ~ o f ~ c o v a r i a t e s ~ o f ~$
	x is used.

Value

pv In order the included covariates, the regression coefficient values, the Gaussian P-values, the standard P-values.
res The residuals
stpv The covariates in order of selection and Gaussian P-values.

Examples

```
data(boston)
    bostint<-fgeninter(boston[,1:13],2)[[1]]
    a<-f1st(boston[,14],bostint,kmn=10, sub=TRUE)
```

f2st Repeated stepwise selection of covariates

Description

Repeated stepwise selection of covariates

Usage

f2st ($y, x, p 0=0.01, k m n=0, k m x=0, k e x=0, m x=21, l m=9 \wedge 9, s u b=T, i n r=T, x i n r=F, q q=-1$)

Arguments

y
x

p0

kmn The minimum number of included covariates irrespective of cut-off P -value
$\mathrm{kmx} \quad$ The maximum number of included covariates irrespective of cut-off P -value.
kex The excluded covariates
mx
lm
sub
Dependent variable
Covariates
The P-value cut-off
x
The maximum number of covariates for an all subset search
The maximum number of linear approximations
Logical if TRUE select the best subset

inr	Logical if TRUE include an intercept
xinr	Logical if TRUE intercept already included
qq	The number of covariates to choose from. If qq=-1 the number of covariates of
	x is used.

Value

pv In order the linear approximation, the included covariates, the Gaussian P-values.

Examples

```
data(boston)
bostint<-fgeninter(boston[,1:13],2)[[1]]
a<-f2st(boston[,14],bostint,1m=3, sub=FALSE)
```

f3st Stepwise selection of covariates

Description

Stepwise selection of covariates

Usage

f3st ($y, x, m, p 0=0.01, k m n=0, k m x=0, k e x=0, m x=21, s u b=T, i n r=T, x i n r=F, q q=-1, k e x m x=100)$

Arguments

y	Dependent variable
x	Covariates
m	The number of iterations
p0	The P-value cut-off
kmn	The minimum number of included covariates irrespective of cut-off P -value
kmx	The maximum number of included covariates irrespective of cut-off P-value.
kex	The excluded covariates
mx	The maximum number covariates for an all subset search
sub	Logical if TRUE best subset selected
inr	Logical if TRUE include intercept if not present
xinr	Logical if TRUE intercept already present
qq	The number of covariates to choose from. If $q q=-1$ the number of covariates of x is used.
kexmx	The maximum number of covariates in an approximation.

Value

covch The sum of squared residuals and the selected covariates ordered in increasing size of sum of squared residuals.
lai The number of rows of covch

Examples

```
    data(leukemia)
    a<-f3st(leukemia[[1]],leukemia[[2]],m=2,kmn=5, sub=TRUE,kexmx=10)
```

f3sti Selection of covariates with given excluded covariates

Description

Selection of covariates with given excluded covariates

Usage

f3sti(y, x, covch, ind, $m, p 0=0.01, k m n=0, k m x=0, k e x=0, m x=21$, sub=T,inr=F, $x i n r=F, q q=-1, k e x m x=100)$

Arguments

$y \quad$ Dependent variable
$x \quad$ Covariates
covch Sum of squared residuals and selected covariates
ind The excluded covariates
m Number of iterations
p0 The P-value cut-off
kmn The minimum number of included covariates irrespective of cut-off P -value
kmx The maximum number of included covariates irrespective of cut-off P -value.
kex The excluded covariates
$m x \quad$ The maximum number covariates for an all subset search
sub Logical if TRUE best subset selected
inr Logical if TRUE include intercept if not present
xinr Logical if TRUE intercept already present
$\mathrm{qq} \quad$ The number of covariates to choose from. If $\mathrm{qq}=-1$ the number of covariates of x is used.
kexmx The maximum number of covariates in an approximation.

Value

ind1 The excluded covariates
covch The sum of squared residuals and the selected covariates ordered in increasing size of sum of squared residuals

Examples

```
data(leukemia)
covch=c(2.023725,1182,1219, 2888,0)
covch<-matrix(covch, nrow=1, ncol=5)
ind<-c(1182,1219, 2888)
ind<-matrix(ind,nrow=3,ncol=1)
m<-1
a<-f3sti(leukemia[[1]],leukemia[[2]],covch,ind,m,kexmx=5)
```


Description

The subset are ordered according to the sum of squared residuals. Subsets can be decoded with decode.R.

Usage

fasb ($\mathrm{y}, \mathrm{x}, \mathrm{p} 0=0.01, \mathrm{ind}=0, \mathrm{inr}=\mathrm{T}, \mathrm{xinr}=\mathrm{F}, \mathrm{qq}=-1$)

Arguments

y	The dependent variable
x	The covariates
p 0	Cut-off p-value for significance
ind	The indices of a subset of covariates for which all subsets are to be considered
inr	If TRUE to include intercept
xinr	If TRUE intercept already included
qq	The number of covariates from which to choose. Equals number of covariates minus length of ind if $q q=-1$.

Value

nv Coded List of subsets with number of covariates and sum of squared residuals

Examples

```
data(redwine)
nvv<-fasb(redwine[,12],redwine[,1:11])
```

fgeninter Generation of interactions

Description

Generates all interactions of degree at most ord

Usage

fgeninter (x,ord)

Arguments

x	Covariates
ord	Order of interactions

Value

xx All interactions of order at most ord.
intx Decomposes a given interaction covariate of $x x$

Examples

```
    data(boston)
    bostint<-fgeninter(boston[,1:13],2)[[1]]
```

 fgentrig Generation of sine and cosine functions

Description

Generates $\sin \left(\mathrm{pi}^{*} \mathrm{j}^{*}(1: \mathrm{n}) / \mathrm{n}\right)($ odd $)$ and $\cos \left(\mathrm{pi}^{*} \mathrm{j}^{*}(1: \mathrm{n}) / \mathrm{n}\right)$ (even) for $\mathrm{j}=1, \ldots, \mathrm{~m}$ for a given sample size n .

Usage

fgentrig(n,m)

Arguments

n
m

Sample size
Maximum order of sine and cosine functions

Value

x The functions $\sin \left(\mathrm{pi}^{*} \mathrm{j}^{*}(1: \mathrm{n}) / \mathrm{n}\right)$ (odd) and $\cos \left(\mathrm{pi}^{*} \mathrm{j}^{*}(1: \mathrm{n}) / \mathrm{n}\right)$ (even) for $\mathrm{j}=1, \ldots, \mathrm{~m}$.

Examples

trig<-fgentrig $(36,36)$
fgr1st Calculates a dependence graph using Gaussian stepwise selection

Description

Calculates an independence graph using Gaussian stepwise selection

Usage

fgr1st ($x, p 0=0.01$, ind $=0, k m n=0, k m x=0, m x=21$, nedge $=10^{\wedge} 5$, inr=T, $x i n r=F, q q=-1$)

Arguments

x
p0
ind \quad Restricts the dependent nodes to this subset
kmn The minimum number selected variables for each node irrespective of cut-off P -value
kmx The maximum number selected variables for each node irrespective of cut-off P -value
$m x \quad$ Maximum number of selected covariates for each node for all subset search
nedge Maximum number of edges
inr Logical, if TRUE include an intercept
xinr Logical, if TRUE intercept already included
qq The number of covariates to choose from. If $q q=-1$ the number of covariates of x is used

Value

ned Number of edges
edg List of edges together with P-values for each edge and proportional reduction of sum of squared residuals.

Examples

```
data(boston)
a<-fgr1st(boston[,1:13],ind=3:6)
```


Description

Calculation of lagged covariates

Usage

flag(x, n, i,lag,inr)

Arguments

x	The covariates
n	The sample size
i	The dependent variable
lag	The maximum lag
inr	If true then intersect included

Value

y The ith covariate of x without a lag, the dependent variable.
xl The covariates with lags from 1 :lag starting with the first covariate.

Examples

```
data(abcq)
abcql<-flag(abcq, 240,1,16,TRUE)
a<-f1st(abcql[[1]],abcql[[2]])
```


Description

Calculates the regression coefficients, the P -values and the standard P -values for the chosen subset ind.

Usage

fpval (y, x, ind, inr=T, xinr=F , qq=-1)

Arguments

y	The dependent variable
x	The covariates
ind	The indices of the subset of the covariates whose P-values are required
inr	Logical If TRUE intercept to be included
xinr	If TRUE intercept already included
qq	The total number of covariates from which ind was chosen. If $q q=-1 ~ t h e ~ n u m b e r ~$ of covariates of x minus length ind plus 1 is taken.

Value

apv In order the subset ind, the regression coefficients, the Gaussian P-values, the standard P-values and the proportion of sum of squares explained.
res The residuals

Examples

```
data(boston)
a<-fpval(boston[,14],boston[,1:13],c(1, 2, 4:6, 8:13))
```


fundr \quad Converts directed into an undirected graph

Description

Conversion of a directed graph into an undirected graph

Usage

fundr (gr)

Arguments

gr
A directed graph

Value

gr The undirected graph

Examples

```
data(boston)
grb<-fgr1st(boston[,1:13])
grbu<-fundr(grb[[2]][,1:2])
```


Description

Dataset of $n=72$ persons indicating presence or absence of leukemia (variable 3572) and $q=3571$ gene expressions of the 72 persons (variables 1 to 3571)

Usage

data(leukemia)

Format

y 0-1 data of individuals with and without leukemia.
\mathbf{x} covariates of the level of 3571 genes.

Source

http://stat.ethz.ch/~dettling/bagboost.html

References

Boosting for tumor classification with gene expression data. Dettling, M. and Buehlmann, P. Bioinformatics, 2003,19(9): 1061-1069.

```
    mel-temp Melbourne minimum temperature
```


Description

The daily minimum temperature in Melbourne for the years 1981-1990.

Usage

mel_temp

Format

A vector of length 3650

Source

https://www.kaggle.com/paulbrabban/daily-minimum-temperatures-in-melbourne

Description

The subjective quality of wine on an integer scale from 1-10 (variable 12) together with 11 physicochemical properties

Usage

redwine

Format

A matrix of size 1599×12

Source

https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

References

Modeling wine preferences by data mining from physicochemical properties, Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J., Decision Support Systems, Elsevier, 2009,47(4):547-553.
simgpval Simulates Gaussian P-values

Description

Simulates Gaussian P-values

Usage

simgpval($\mathrm{y}, \mathrm{x}, \mathrm{i}, \mathrm{nsim}, \mathrm{qq}=-1, \mathrm{pl} \mathrm{t}=\mathrm{TRUE})$

Arguments

y
x
i
nsim
qq
plt

Dependent variable
Covariates
The chosen covariate
The number of simulations
The total number of covariates available
Logical, if TRUE the F P-values of the Gaussian covariates are ordered and plotted

Value

pvg P-value of $x _i$ and relative frequency

Examples

```
data(snspt)
snspt<-matrix(snspt,nrow=3253,ncol=1)
a<-flag(snspt,3253,1,12,inr=FALSE)
simgpval(a[[1]],a[[2]],7,10,plt=FALSE)
```

snspt Sunspot data

Description

The average number of sunspots each month from January 1749 to January 2020

Usage

snspt

Format

A vector of size 3253

Source

WDC-SILSO, Royal Observatory of Belgium, Brussels

vardata \quad USA economics data

Description

United States economic data taken from the FRED-MD macroeconomic database with the NAs removed. 182 indices each of length 256

Usage

vardata

Format

A matrix of size 256 X 182

Source

https://research.stlouisfed.org/econ/mccracken/fred-databases

Index

```
* datasets
    abcq, 2
    boston, 3
    leukeia, 13
    mel-temp, 13
    redwine, 14
    snspt, 15
    vardata, 15
```

abcq, 2
boston, 3
decode, 4
f1st, 4
f2st, 5
f3st, 6
f3sti, 7
fasb, 8
fgeninter, 9
fgentrig, 9
fgr1st, 10
flag, 11
fpval, 11
fundr, 12
leukeia, 13
leukemia (leukeia), 13
mel-temp, 13
mel_temp (mel-temp), 13
redwine, 14
simgpval, 14
snspt, 15
vardata, 15

