functionals
is a lightweight toolkit for functional
programming in R with built-in support for parallelism and progress
bars. It extends base R’s functional tools with a consistent, minimal
API for mapping, walking, reducing, cross-validating, and repeating
computations across lists, data frames, and grouped data.
Function | Main arguments | Output type | Description |
---|---|---|---|
fmap() |
.x , .f , ncores ,
pb |
list | Map .f over elements of .x |
fmapn() |
.l , .f , ncores ,
pb |
list | Map .f over multiple aligned lists |
fmapr() |
.df , .f , ncores ,
pb |
list | Map .f over each row of a data frame (as named
list) |
fmapc() |
.df , .f , ncores ,
pb |
list | Map .f(column, name) over each column |
fmapg() |
.df , .f , by ,
ncores , pb |
list | Map .f(group_df) over groups defined by a column |
floop() |
.x , .f , ... ,
ncores , pb |
list | General-purpose functional loop with side-effects |
fwalk() |
.x , .f , ncores ,
pb |
NULL | Map .f over .x for side-effects only
(invisible return) |
frepeat() |
times , expr , .x ,
ncores , pb |
list/vector | Repeat a call/expression multiple times |
fcv() |
.splits , .f , ncores ,
pb |
list | Map .f over resampling splits from
rsample::vfold_cv() |
freduce() |
.x , .f , ... |
scalar/list | Reduce .x using a binary function .f |
fcompose() |
any number of functions f1, f2, ... |
function | Compose multiple functions: f1(f2(...(x))) |
fapply() |
.x , .f , ncores ,
pb , ... |
list | Core internal utility for applying a function over
.x |
Task | functionals Example |
purrr Example |
Base R |
---|---|---|---|
Map square | fmap(1:5, function(x) x^2) |
map(1:5, function(x) x^2) |
lapply(1:5, function(x) x^2) |
Map over N arguments | fmapn(list(1:3, 4:6, 7:9), function(x, y, z) x + y + z) |
pmap(list(1:3, 4:6, 7:9), function(x, y, z) ...) |
Map(function(x, y, z) ..., 1:3, 4:6, 7:9) |
Map over data frame rows | fmapr(df, function(row) row$a + row$b) |
pmap(df[c("a", "b")], function(x, y) x + y) |
apply(df, 1, function(row) ...) |
Map over data frame cols | fmapc(df, function(x, name) mean(x)) |
imap(df, function(x, name) mean(x)) |
lapply(df, mean) |
Grouped map | fmapg(df, f, by = "group") |
map(split(df, df$group), f) |
lapply(split(df, df$group), f) |
General-purpose loop | floop(1:3, function(x) cat(x)) |
(manual recursion) | for (x in 1:3) cat(x) |
Parallel + progress | fmap(x, f, ncores = 4, pb = TRUE) |
(future_map(x, f)) with progressr |
parLapply(cl, x, f) or mclapply() |
Repeat simulation | frepeat(100, function() rnorm(1)) |
(manual loop) | replicate(100, rnorm(1)) |
Walk with side effects | fwalk(letters, function(x) cat(x)) |
walk(letters, function(x) cat(x)) |
lapply(letters, cat) |
Reduce | freduce(1:5, `+`) |
reduce(1:5, `+`) |
Reduce(`+`, 1:5) |
Compose functions | fcompose(sqrt, abs)(-4) |
compose(sqrt, abs)(-4) |
(function(x) sqrt(abs(x)))(-4) |
~ .x + .y
?While functionals
draws inspiration from
purrr
, it intentionally avoids supporting the formula-based
anonymous function syntax (e.g., ~ .x + 1
) for now.
This decision is based on:
rlang
)function(x) { ... }
styleWe may consider adding tidy evaluation support (e.g., with quosures
or rlang::as_function
) in a future release. However, the
current philosophy favors clarity and simplicity.
# install.packages("functionals") # when available
#remotes::install_github("ielbadisy/functionals")
library(functionals)
library(purrr)
library(furrr)
#> Loading required package: future
library(pbapply)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(rsample)
library(bench)
plan(multisession)
# utility to compare results
<- function(label, x, y) {
compare_outputs cat("\n", label, "->", if (identical(x, y)) "dentical\n" else if (isTRUE(all.equal(x, y))) "nearly equal\n" else "different\n")
}
# strip names and convert to plain numeric vector
<- function(x) as.numeric(unlist(x, use.names = FALSE)) as_vec
<- fmap(1:5, function(x) x^2)
x1 <- lapply(1:5, function(x) x^2)
x2 <- map(1:5, ~ .x^2)
x3 <- future_map(1:5, ~ .x^2)
x4 <- pblapply(1:5, function(x) x^2)
x5 compare_outputs("Element-wise: base", x1, x2)
#>
#> Element-wise: base -> dentical
compare_outputs("Element-wise: purrr", x1, x3)
#>
#> Element-wise: purrr -> dentical
compare_outputs("Element-wise: furrr", x1, x4)
#>
#> Element-wise: furrr -> dentical
compare_outputs("Element-wise: pbapply", x1, x5)
#>
#> Element-wise: pbapply -> dentical
<- fmapn(list(1:3, 4:6), function(x, y) x + y)
x1 <- Map(`+`, 1:3, 4:6)
x2 <- pmap(list(1:3, 4:6), ~ ..1 + ..2)
x3 <- future_pmap(list(1:3, 4:6), ~ ..1 + ..2)
x4 compare_outputs("Multi-input: base", x1, x2)
#>
#> Multi-input: base -> dentical
compare_outputs("Multi-input: purrr", x1, x3)
#>
#> Multi-input: purrr -> dentical
compare_outputs("Multi-input: furrr", x1, x4)
#>
#> Multi-input: furrr -> dentical
<- fmapr(mtcars, function(row) row$mpg + row$cyl)
x1 <- lapply(seq_len(nrow(mtcars)), function(i) as.list(mtcars[i, ]))
rowlist <- lapply(rowlist, function(row) row$mpg + row$cyl)
x2 <- map(rowlist, function(row) row$mpg + row$cyl)
x3 compare_outputs("Row-wise: base", as_vec(x1), as_vec(x2))
#>
#> Row-wise: base -> dentical
compare_outputs("Row-wise: purrr", as_vec(x1), as_vec(x3))
#>
#> Row-wise: purrr -> dentical
<- fmapc(mtcars, function(col, name) mean(col))
x1 <- sapply(mtcars, mean)
x2 <- imap(mtcars, ~ mean(.x))
x3 <- future_imap(mtcars, ~ mean(.x))
x4 compare_outputs("Column-wise: base", x1, as.list(x2))
#>
#> Column-wise: base -> dentical
compare_outputs("Column-wise: purrr", x1, x3)
#>
#> Column-wise: purrr -> dentical
compare_outputs("Column-wise: furrr", x1, x4)
#>
#> Column-wise: furrr -> dentical
<- fmapg(iris, function(df) colMeans(df[1:4]), by = "Species")
x1 <- lapply(split(iris, iris$Species), function(df) colMeans(df[1:4]))
x2 <- map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
x3 <- future_map(split(iris, iris$Species), ~ colMeans(.x[1:4]))
x4 compare_outputs("Group-wise: base", x1, x2)
#>
#> Group-wise: base -> dentical
compare_outputs("Group-wise: purrr", x1, x3)
#>
#> Group-wise: purrr -> dentical
compare_outputs("Group-wise: furrr", x1, x4)
#>
#> Group-wise: furrr -> dentical
cat("\nSide-effects:\n")
#>
#> Side-effects:
fwalk(1:3, print)
#> [1] 1
#> [1] 2
#> [1] 3
<- floop(1:5, function(x) x^2, .capture = TRUE)
x1 <- lapply(1:5, function(x) x^2)
x2 <- {
x3 <- list()
out for (i in 1:5) out[[i]] <- i^2
out
}compare_outputs("floop() vs lapply()", x1, x2)
#>
#> floop() vs lapply() -> dentical
compare_outputs("floop() vs for()", x1, x3)
#>
#> floop() vs for() -> dentical
cat("\nGeneral-purpose loop (side-effects):\n")
#>
#> General-purpose loop (side-effects):
floop(1:3, function(x) cat("floop says:", x, "\n"), pb = TRUE, .capture = FALSE)
#> | | 0% elapsed=00h 00m 00s, remaining~...floop says: 1
#> |================ | 33% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 2
#> |================================= | 67% elapsed=00h 00m 00s, remaining~00h 00m 00sfloop says: 3
#> |==================================================| 100% elapsed=00h 00m 00s, remaining~00h 00m 00s
cat("for-loop equivalent:\n")
#> for-loop equivalent:
for (x in 1:3) cat("for says:", x, "\n")
#> for says: 1
#> for says: 2
#> for says: 3
<- vfold_cv(iris, v = 3)$splits
splits <- function(split) mean(analysis(split)$Sepal.Length)
fit_model <- fcv(splits, fit_model)
x1 <- lapply(splits, fit_model)
x2 compare_outputs("CV map: base", x1, x2)
#>
#> CV map: base -> dentical
<- frepeat(times = 10, expr = rnorm(1))
x1 <- as.list(replicate(10, rnorm(1)))
x2 <- as.list(pbreplicate(10, rnorm(1)))
x3 cat("\nRepeat: Results not comparable (randomized output)\n")
#>
#> Repeat: Results not comparable (randomized output)
<- freduce(1:5, `+`)
x1 <- Reduce(`+`, 1:5)
x2 <- reduce(1:5, `+`)
x3 compare_outputs("Reduce: base", x1, x2)
#>
#> Reduce: base -> dentical
compare_outputs("Reduce: purrr", x1, x3)
#>
#> Reduce: purrr -> dentical
<- fcompose(sqrt, abs)(-4)
x1 <- (function(x) sqrt(abs(x)))(-4)
x2 <- compose(sqrt, abs)(-4)
x3 compare_outputs("Compose: base", x1, x2)
#>
#> Compose: base -> dentical
compare_outputs("Compose: purrr", x1, x3)
#>
#> Compose: purrr -> dentical