## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message = FALSE, eval = FALSE-------------------------------------------- # # load CRAN libraries # library(finnts) # library(sparklyr) # # install.packages("qs") # library(qs) # # # connect to spark cluster # options(sparklyr.log.console = TRUE) # options(sparklyr.spark_apply.serializer = "qs") # uses the qs package to improve data serialization before sending to spark cluster # # sc <- sparklyr::spark_connect(method = "databricks") # # # call Finn with spark parallel processing # hist_data <- timetk::m4_monthly %>% # dplyr::rename(Date = date) %>% # dplyr::mutate(id = as.character(id)) # # data_sdf <- sparklyr::copy_to(sc, hist_data, "data_sdf", overwrite = TRUE) # # run_info <- set_run_info( # experiment_name = "finn_fcst", # run_name = "spark_run_1", # path = "/dbfs/mnt/example/folder" # important that you mount an ADLS path # ) # # forecast_time_series( # run_info = run_info, # input_data = data_sdf, # combo_variables = c("id"), # target_variable = "value", # date_type = "month", # forecast_horizon = 3, # parallel_processing = "spark", # return_data = FALSE # ) # # # return the outputs as a spark data frame # finn_output_tbl <- get_forecast_data( # run_info = run_info, # return_type = "sdf" # )