## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(evolvability) ## ----------------------------------------------------------------------------- # Only a very small sample size is used # in the interest of computational speed: set.seed(57) n_species <- 50 tree <- ape::rtree(n = n_species) tree <- ape::chronopl(tree, lambda = 1) ## ----------------------------------------------------------------------------- A <- Matrix::Matrix(ape::vcv(tree), sparse = TRUE) ## ----------------------------------------------------------------------------- colnames(A) <- rownames(A) <- paste("species", 1:n_species, sep = "_") ## ----------------------------------------------------------------------------- y <- 5 + t(chol(A))%*%rnorm(n_species, 0, 2) + # BM process with mean = 5 and sd = 2 rnorm(n_species, 0, 1) # residual variation with sd = 1 ## ----------------------------------------------------------------------------- dt <- data.frame(species = colnames(A), y = as.vector(y)) ## ----------------------------------------------------------------------------- mod <- Almer(y ~ 1 + (1|species), data = dt, A = list(species = A)) summary(mod) ## ----------------------------------------------------------------------------- dt$SE <- runif(nrow(dt), min = 0.01, max = 0.02) ## ----------------------------------------------------------------------------- mod_SE <- Almer_SE(y ~ 1 + (1|species), data = dt, SE = dt$SE, A = list(species = A)) summary(mod_SE) ## ----------------------------------------------------------------------------- sim_y <- Almer_sim(mod, nsim = 3) sim_y[1:3,] ## ----------------------------------------------------------------------------- # The number of bootstrap simulations is kept very low in the interest # of computational speed. Often 1000 is used in real analyses. Almer_boot_obj <- Almer_boot(mod, nsim = 10) Almer_boot_obj$fixef Almer_boot_obj$vcov ## ----------------------------------------------------------------------------- # The number of bootstrap simulations is kept very low in the interest # of computational speed. Often 1000 is used in real analyses. phylH_obj <- phylH(mod, numerator = "species", nsim = 10) phylH_obj$phylH