## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(esem) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("tidyverse","psych","lavaan","semPlot") # remotes::install_github("maria-pro/esem", build_vignettes = TRUE) ## ----eval=FALSE--------------------------------------------------------------- # # library(esem) # library(tidyverse) # library(lavaan) # library(semPlot) # library(psych) # # #the package with the dataset to be used # remotes::install_github("maria-pro/esem", build_vignettes = FALSE) # library(esem) ## ----eval=FALSE--------------------------------------------------------------- # sdq_lsac<-sdq_lsac ## ----eval=FALSE--------------------------------------------------------------- # dim(sdq_lsac) ## ----eval=FALSE--------------------------------------------------------------- # describe(sdq_lsac) ## ----eval=FALSE--------------------------------------------------------------- # main_loadings_list <- list( # pp = c("s6_1", "s11_1R", "s14_1R", "s19_1", "s23_1"), # cp = c("s5_1", "s7_1R", "s12_1", "s18_1", "s22_1"), # es = c("s3_1", "s8_1", "s13_1", "s16_1", "s24_1"), # ha = c("s2_1","s10_1","s15_1","s21_1R","s25_1R"), # ps = c("s1_1","s4_1","s9_1","s17_1","s20_1") # ) ## ----eval=FALSE--------------------------------------------------------------- # # esem_efa_results <- esem_efa(data=sdq_lsac, # nfactors =5, # fm = 'ML', # rotate="geominT", # scores="regression", # residuals=TRUE, # missing=TRUE) # ## ----eval=FALSE--------------------------------------------------------------- # # main_loadings_list <- list( # pp = c("s6_1", "s11_1R", "s14_1R", "s19_1", "s23_1"), # cp = c("s5_1", "s7_1R", "s12_1", "s18_1", "s22_1"), # es = c("s3_1", "s8_1", "s13_1", "s16_1", "s24_1"), # ha = c("s2_1","s10_1","s15_1","s21_1R","s25_1R"), # ps = c("s1_1","s4_1","s9_1","s17_1","s20_1") # ) # # target<-make_target( # data=sdq_lsac, # keys=main_loadings_list) # # esem_efa( # data=sdq_lsac, # nfactors = 5, # rotate="TargetQ", # Target= target) # ## ----eval=FALSE--------------------------------------------------------------- # esem_model <- esem_syntax(esem_efa_results, referent_list) # # writeLines(esem_model) # ## ----eval=FALSE--------------------------------------------------------------- # esem_fit <- esem_cfa(model=esem_model, # data=sdq_lsac, # std.lv=TRUE, # ordered = TRUE) # summary(esem_fit, fit.measures = TRUE, standardized = TRUE, ci = TRUE) ## ----eval=FALSE--------------------------------------------------------------- # semPaths(esem_fit,whatLabels = "std",layout = "tree")