Package 'emery'

February 20, 2024

Title Accuracy Statistic Estimation for Imperfect Gold Standards

Version 0.5.1

Description Produce maximum likelihood estimates of common accuracy statistics for multiple measurement methods when a gold standard is not available. An R implementation of the expectation maximization algorithms described in Zhou et al. (2011) <doi:10.1002/9780470906514> with additional functions for creating simulated data and visualizing results. Supports binary, ordinal, and continuous measurement methods.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

Imports stats, dplyr, ggplot2, purrr, tibble, tidyr, mvtnorm, methods, stringr, Rdpack

RdMacros Rdpack

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Corie Drake [aut, cre, cph] (<https://orcid.org/0000-0002-1517-7103>)

Maintainer Corie Drake <therealcfdrake@gmail.com>

Repository CRAN

Date/Publication 2024-02-20 20:20:06 UTC

R topics documented:

boot_ML
censor_data
define_disease_state
estimate_ML
generate_multimethod_data
MultiMethodMLEstimate-class
name_thing

Index	:	16
	pollinate_ML	14
	plot,MultiMethodMLEstimate-method	

boot_ML

Bootstrap ML accuracy statistic estimation for multi-method data

Description

boot_ML() is a function used to generate bootstrap estimates of results generated by estimate_ML() primarily for use in creating nonparametric confidence intervals.

Usage

```
boot_ML(
  type = c("binary", "ordinal", "continuous"),
  data,
  n_boot = 100,
  max_iter = 1000,
  tol = 1e-07,
  seed = NULL,
  ...
)
```

Arguments

type	A string specifying the data type of the methods under evaluation.
data	An n_obs by n_method matrix containing the observed values for each method. If the dimensions are named, row names will be used to name each observation (obs_names) and column names will be used to name each measurement method (method_names).
n_boot	number of bootstrap estimates to compute
max_iter	The maximum number of EM algorithm iterations to compute before reporting a result.
tol	The minimum change in statistic estimates needed to continue iterating the EM algorithm.
seed	optional seed for RNG
	Additional arguments

Value

a list containing accuracy estimates, v, and the parameters used.

v_0	result from original data
v_star	list containing results from each bootstrap resampling
params	list containing the parameters used

censor_data

Examples

```
# Set seed for this example
set.seed(11001101)
# Generate data for 4 binary methods
my_sim <- generate_multimethod_data(
    "binary",
    n_obs = 75,
    n_method = 4,
    se = c(0.87, 0.92, 0.79, 0.95),
    sp = c(0.85, 0.93, 0.94, 0.80),
    method_names = c("alpha", "beta", "gamma", "delta"))
# Bootstrap ML results
boot_ex <- boot_ML(
    "binary",
    data = my_sim$generated_data,
    n_boot = 20)
```

censor_data

Censor data randomly rowwise

Description

Censor data randomly rowwise

Usage

```
censor_data(
  n_obs = dis$n_obs,
  first_reads_all = first_reads_all,
  n_method_subset = n_method_subset,
  n_method = n_method
)
```

Arguments

n_obs	An integer representing the number of observations to simulate.	
first_reads_all		
	Used for binary methods. A logical which forces method 1 to have a result for every observation	
n_method_subset		
	Used for binary methods. An integer defining how many methods to select at random to produce a result for each observation	
n_method	An integer representing the number of methods to simulate.	

Description

Define the True disease state of a simulated sample

Usage

```
define_disease_state(D = NULL, n_obs = NULL, prev = NULL)
```

Arguments

D	Optional binary vector representing the true classification of each observation.
n_obs	An integer representing the number of observations to simulate.
prev	A value between 0-1 which represents the proportion of "positive" results in the target population.

Value

A list of features defining the true disease status of each observation

estimate_ML	Estimate maximum likelihood accuracy statistics by expectation max- imization
-------------	--

Description

estimate_ML() is a general function for estimating the maximum likelihood accuracy statistics for a set of methods with no known reference value, i.e. "truth", or "gold standard".

Usage

```
estimate_ML(
  type = c("binary", "ordinal", "continuous"),
  data,
  init = list(NULL),
  max_iter = 1000,
  tol = 1e-07,
  save_progress = TRUE,
  ...
)
estimate_ML_binary(
  data,
```

estimate_ML

```
init = list(prev_1 = NULL, se_1 = NULL, sp_1 = NULL),
  max_{iter} = 100,
  tol = 1e-07,
  save_progress = TRUE
)
estimate_ML_continuous(
  data,
  init = list(prev_1 = NULL, mu_i1_1 = NULL, sigma_i1_1 = NULL, mu_i0_1 = NULL,
    sigma_i0_1 = NULL),
  max_iter = 100,
  tol = 1e-07,
  save_progress = TRUE
)
estimate_ML_ordinal(
  data,
  init = list(pi_1_1 = NULL, phi_1ij_1 = NULL, phi_0ij_1 = NULL, n_level = NULL),
  level_names = NULL,
  max_iter = 1000,
  tol = 1e-07,
  save_progress = TRUE
)
```

Arguments

type	A string specifying the data type of the methods under evaluation.
data	An n_obs by n_method matrix containing the observed values for each method. If the dimensions are named, row names will be used to name each observation (obs_names) and column names will be used to name each measurement method (method_names).
init	An optional list of initial values used to seed the EM algorithm. If initial values are not provided, the pollinate_ML() function will be called on the data to estimate starting values. It is recommended to try several sets of starting parameters to ensure that the algorithm converges to the same results. This is to verify that the result does not represent a local extrema.
max_iter	The maximum number of EM algorithm iterations to compute before reporting a result.
tol	The minimum change in statistic estimates needed to continue iterating the EM algorithm.
save_progress	A logical indication of whether to save interim calculations used in the EM algorithm.
	Additional arguments
level_names	An optional, ordered, character vector of unique names corresponding to the levels of the methods.

Details

The lack of an infallible reference method is referred to as an imperfect gold standard (GS). Accuracy statistics which rely on a GS method, such as sensitivity, specificity, and AUC, can be estimated using imperfect gold standards by iteratively estimating the maximum likelihood values of these statistics while the conditional independence assumption holds. estimate_ML() relies on a collection of expectation maximization (EM) algorithms to achieve this. The EM algorithms used in this function are based on those presented in *Statistical Methods in Diagnostic Medicine, Second Edition* (Zhou et al. 2011) and have been validated on several examples therein. Additional details about these algorithms can be found for binary (Walter and Irwig 1988), ordinal (Zhou et al. 2005), and continuous (Hsieh et al. 2009) methods. Minor changes to the literal calculations have been made for efficiency, code readability, and the like, but the underlying steps remain functionally unchanged.

Value

estimate_ML() returns an S4 object of class "MultiMethodMLEstimate" containing the maximum likelihood accuracy statistics calculated by EM.

References

Zhou X, Obuchowski NA, McClish DK (2011). *Statistical Methods in Diagnostic Medicine*. Wiley. doi:10.1002/9780470906514.

Walter SD, Irwig LM (1988). "Estimation of test error rates, disease prevalence and relative risk from misclassified data: a review." *J. Clin. Epidemiol.*, **41**(9), 923–937. doi:10.1016/0895-4356(88)901102.

Zhou X, Castelluccio P, Zhou C (2005). "Nonparametric estimation of ROC curves in the absence of a gold standard." *Biometrics*, **61**(2), 600–609. doi:10.1111/j.15410420.2005.00324.x.

Hsieh H, Su H, Zhou X (2009). "Interval Estimation for the Difference in Paired Areas under the ROC Curves in the Absense of a Gold Standard Test." *Statistics in Medicine*. https://doi.org/10.1002/sim.3661.

Examples

```
# Set seed for this example
set.seed(11001101)
# Generate data for 4 binary methods
my_sim <- generate_multimethod_data(
    "binary",
    n_obs = 75,
    n_method = 4,
    se = c(0.87, 0.92, 0.79, 0.95),
    sp = c(0.85, 0.93, 0.94, 0.80),
    method_names = c("alpha", "beta", "gamma", "delta"))
# View the data
my_sim$generated_data</pre>
```

View the parameters used to generate the data

```
my_sim$params
# Estimate ML accuracy values by EM algorithm
my_result <- estimate_ML(
    "binary",
    data = my_sim$generated_data,
    save_progress = FALSE # this reduces the data stored in the resulting object
)
# View results of ML estimate
my_result@results</pre>
```

```
generate_multimethod_data
```

Create data sets which simulate paired measurements of multiple methods

Description

generate_multimethod_data() is a general function for creating a data set which simulates the results one might see when using several different methods to measure a set of objects.

Usage

```
generate_multimethod_data(
  type = c("binary", "ordinal", "continuous"),
  n_{method} = 3,
 n_{obs} = 100,
 prev = 0.5,
 D = NULL,
 method_names = NULL,
 obs_names = NULL,
  . . .
)
generate_multimethod_binary(
  n_{method} = 3,
  n_{obs} = 100,
  prev = 0.5,
 D = NULL,
  se = rep(0.9, n_method),
  sp = rep(0.9, n_method),
 method_names = NULL,
 obs_names = NULL,
 n_method_subset = n_method,
  first_reads_all = FALSE
)
```

```
generate_multimethod_ordinal(
  n_{method} = 3,
  n_{obs} = 100,
  prev = 0.5,
 D = NULL,
  n_{level} = 5,
 pmf_pos = matrix(rep(1:n_level - 1, n_method), nrow = n_method, byrow = TRUE),
 pmf_neg = matrix(rep(n_level:1 - 1, n_method), nrow = n_method, byrow = TRUE),
 method_names = NULL,
  level_names = NULL,
  obs_names = NULL,
  n_method_subset = n_method,
  first_reads_all = FALSE
)
generate_multimethod_continuous(
  n_{method} = 2,
  n_{obs} = 100,
  prev = 0.5,
 D = NULL,
 mu_{i1} = rep(12, n_method),
  sigma_i1 = diag(n_method),
 mu_i0 = rep(10, n_method),
  sigma_i0 = diag(n_method),
 method_names = NULL,
  obs_names = NULL,
  n_method_subset = n_method,
  first_reads_all = FALSE
)
```

Arguments

type	A string specifying the data type of the methods being simulated.
n_method	An integer representing the number of methods to simulate.
n_obs	An integer representing the number of observations to simulate.
prev	A value between 0-1 which represents the proportion of "positive" results in the target population.
D	Optional binary vector representing the true classification of each observation.
method_names	Optional vector of names used to identify each method.
obs_names	Optional vector of names used to identify each observation.
	Additional parameters
se, sp	Used for binary methods. A vector of length n_method of values between 0-1 representing the sensitivity and specificity of the methods.
n_method_subse	t
	Used for binary methods. An integer defining how many methods to select at

Used for binary methods. An integer defining how many methods to select at random to produce a result for each observation

first_reads_all		
	Used for binary methods. A logical which forces method 1 to have a result for every observation	
n_level	Used for ordinal methods. An integer representing the number of ordinal levels each method has	
<pre>pmf_pos, pmf_neg</pre>		
	Used for ordinal methods. A n_method by n_level matrix representing the prob- ability mass functions for positive and negative results, respectively	
level_names	Used for ordinal methods. Optional vector of names used to identify each level	
mu_i1, mu_i0	Used for continuous methods. Vectors of length n_method of the method mean values for positive (negative) observations	
sigma_i1, sigma_i0		
	Used for continuous methods. Covariance matrices of method positive (nega- tive) observations	

Details

The function supports binary measurement methods, e.g., Pass/Fail; ordinal measurement methods, e.g., the Likert scale; and continuous measurement methods, e.g., height. The data are generated under the assumption that the underlying population consists of a mixture of two groups. The primary application of this is to simulate a sample from a population which has some prevalence of disease.

Value

A list containing a simulated data set and the parameters used to create it

Examples

```
# Set seed for this example
set.seed(11001101)
# Generate data for 4 binary methods
my_sim <- generate_multimethod_data(</pre>
  "binary",
 n_{obs} = 75,
  n_{method} = 4,
  se = c(0.87, 0.92, 0.79, 0.95),
  sp = c(0.85, 0.93, 0.94, 0.80),
  method_names = c("alpha", "beta", "gamma", "delta"))
# View the data
my_sim$generated_data
# View the parameters used to generate the data
my_sim$params
# Estimate ML accuracy values by EM algorithm
my_result <- estimate_ML(</pre>
  "binary",
```

name_thing

```
data = my_sim$generated_data,
  save_progress = FALSE # this reduces the data stored in the resulting object
)
# View results of ML estimate
my_result@results
```

MultiMethodMLEstimate-class S4 object containing the results of multi-method ML accuracy estimates

Description

S4 object containing the results of multi-method ML accuracy estimates

Slots

results a list of estimated accuracy statistics names a list containing vectors of names of various dimensions data a copy of the data used to generate the estimated values iter an integer number of iterations needed for the EM algorithm to converge prog a list containing the values calculated during each iteration of the EM algorithm type a string describing the data type

name_thing

Create unique names for a set of things

Description

Create unique names for a set of things

Usage

name_thing(thing = "", n = 1)

Arguments

thing	a string that describes the set of items to name
n	an integer number of unique names to create

Value

a vector of unique names

10

Description

Create a list of plots visualizing the expectation maximization process and resulting accuracy statistics stored in a MultiMethodMLEstimate object.

Usage

```
## S4 method for signature 'MultiMethodMLEstimate'
plot(x, y, ...)
```

Arguments

x	a MultiMethodMLEstimate S4 object
У	not used
	Arguments passed on to plot_ML
	params A list of population parameters. This is primarily used to evaluate re- sults from a simulation where the target parameters are known, but can be used to visualize results with respect to some True value.

Value

A list of ggplot2 plots

plot_ML

Create plots visualizing the ML estimation process and results.

Description

plot_ML() is a general function for visualizing results generated by estimate_ML().

Usage

```
plot_ML(ML_est, params = NULL)
plot_ML_binary(
    ML_est,
    params = list(prev = NULL, se = NULL, sp = NULL, D = NULL)
)
plot_ML_ordinal(
    ML_est,
```

```
params = list(pi_1_1 = NULL, phi_1ij_1 = NULL, phi_0ij_1 = NULL, D = NULL)
)
plot_ML_continuous(
    ML_est,
    params = list(prev_1 = NULL, mu_i1_1 = NULL, sigma_i1_1 = NULL, mu_i0_1 = NULL,
        sigma_i0_1 = NULL, D = NULL)
)
```

Arguments

ML_est	A MultiMethodMLEstimate class object
params	A list of population parameters. This is primarily used to evaluate results from a simulation where the target parameters are known, but can be used to visualize results with respect to some True value.

Value

A list of ggplot2 plots.

Binary:

prev	A plot showing how the prevalence estimate changes with each iteration of the EM algorithm
se	A plot showing how the sensitivity estimates of each method change with each iteration of the EM algorithm
sp	A plot showing how the specificity estimates of each method change with each iteration of the EM algorithm
qk	A plot showing how the q values for each observation k change over each iteration of the EM algorithm
qk_hist	A histogram of q values. Observations, k, can be colored by True state if it is passed by params\$D.
se_sp	A plot showing the path the sensitivity and specificity estimates for each method follows during the EM algorithm. True sensitivity and specificity values can be passed by params\$se and params\$sp, respectively. This is useful for comparing algorithm results when applied to simulation data where True parameter values are known.
Ordinal:	
ROC	The Receiver Operator Characteristic (ROC) curves estimated for each method
q_k1	A plot showing how the q values for each observation, k, change when $d=1$ over each iteration of the EM algorithm. Observations can be colored by True state if it is passed (params\$D).
q_k0	A plot showing how the q values for each observation, k, change when d=0 over each iteration of the EM algorithm. Observations can be colored by True state if it is passed by params\$D.

q_k1_hist	A histogram of q_1 values. Observations, k, can be colored by True state if it is passed by params\$D.
phi_d	A stacked bar graph representing the estimated CMFs of each method when $d=0$ and $d=1$.
Continuous:	
ROC	The Receiver Operator Characteristic (ROC) curves estimated for each method
z_k1	A plot showing how the z_k1 values for each observation change over each iteration of the EM algorithm. Observations can be colored by True state if it is passed (params\$D).
z_k0	A plot showing how the z_k0 values for each observation change over each iteration of the EM algorithm. Observations can be colored by True state if it is passed (params\$D).
z_k1_hist	A histogram of z_k1 values. Observations can be colored by True state if it is passed (params\$D).

Examples

```
# Set seed for this example
set.seed(11001101)
# Generate data for 4 binary methods
my_sim <- generate_multimethod_data(</pre>
  "binary",
 n_{obs} = 75,
  n_{method} = 4,
  se = c(0.87, 0.92, 0.79, 0.95),
  sp = c(0.85, 0.93, 0.94, 0.80),
  method_names = c("alpha", "beta", "gamma", "delta"))
# View the data
my_sim$generated_data
# View the parameters used to generate the data
my_sim$params
# Estimate ML accuracy values by EM algorithm
my_result <- estimate_ML(</pre>
  "binary",
  data = my_sim$generated_data,
  save_progress = FALSE \# this reduces the data stored in the resulting object
)
# View results of ML estimate
my_result@results
```

```
pollinate_ML
```

Description

pollinate_ML() is a general helper function which can be used to generate starting values, i.e. seeds, for the estimate_ML() function from a multi-method data set.

Usage

```
pollinate_ML(type = c("binary", "ordinal", "continuous"), data, ...)
pollinate_ML_binary(data, ...)
pollinate_ML_ordinal(
    data,
    n_level = NULL,
    threshold_level = ceiling(n_level/2),
    level_names = NULL
)
pollinate_ML_continuous(
    data,
    prev = 0.5,
    q_seeds = c((1 - prev)/2, 1 - (prev/2)),
    high_pos = TRUE
)
```

Arguments

type	A string specifying the data type of the methods under evaluation.
data	An n_obs by n_method matrix containing the observed values for each method. If the dimensions are named, row names will be used to name each observation (obs_names) and column names will be used to name each measurement method (method_names).
	Additional arguments
n_level	Used for ordinal methods. Integer number of levels each method contains
threshold_level	
	Used for ordinal methods. A value from 1 to n_level which indicates the initial threshold used to define positive and negative disease states.
level_names	Used for ordinal methods. Optional vector of length n_level containing names for each level.
prev	A double between 0-1 representing the proportion of positives in the population
q_seeds	Used for continuous methods. A vector of length 2 representing the quantiles at which the two groups are assumed to be centered

high_pos Used for continuous methods. A logical indicating whether larger values are considered "positive"

Value

a list of EM algorithm initialization values

show,MultiMethodMLEstimate-method

Show a MultiMethodMLEstimate S4 object

Description

Print the accuracy statistic estimates stored in a MultiMethodMLEstimate object.

Usage

S4 method for signature 'MultiMethodMLEstimate'
show(object)

Arguments

object An object of class MultiMethodMLEstimate.

Value

A list containing relevant accuracy statistic estimates. This is a subset of the list stored in results slot of the MultiMethodMLEstimate object.

Index

```
boot_ML, 2
censor_data, 3
define_disease_state, 4
estimate_ML, 4
estimate_ML_binary (estimate_ML), 4
estimate_ML_continuous (estimate_ML), 4
estimate_ML_ordinal (estimate_ML), 4
generate_multimethod_binary
        (generate_multimethod_data), 7
generate_multimethod_continuous
        (generate_multimethod_data), 7
generate_multimethod_data,7
generate_multimethod_ordinal
        (generate_multimethod_data), 7
matrix, 2, 5, 14
MultiMethodMLEstimate-class, 10
name_thing, 10
\verb|plot,MultiMethodMLEstimate-method,11||
plot_ML, 11, 11
plot_ML_binary (plot_ML), 11
plot_ML_continuous (plot_ML), 11
plot_ML_ordinal (plot_ML), 11
pollinate_ML, 14
pollinate_ML_binary (pollinate_ML), 14
pollinate_ML_continuous (pollinate_ML),
        14
pollinate_ML_ordinal (pollinate_ML), 14
```

show,MultiMethodMLEstimate-method, 15