Package ‘einops’

September 3, 2025

Title Flexible, Powerful, and Readable Tensor Operations
Version 0.2.1
Maintainer Qile Yang <qile.yang@berkeley.edu>

Description Perform tensor operations using a concise yet expressive syntax inspired by the Python li-
brary of the same name.
Reshape, rearrange, and combine multidimensional arrays for scientific computing, ma-
chine learning, and data analysis.
Einops simplifies complex manipulations, making code more maintainable and intuitive.
The original implementation is demonstrated in Rogozhnikov (2022) <https:
//openreview.net/forum?id=o0apKSVM2bcj>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

URL https://github.com/Qile@317/einops,
https://qile@317.github.io/einops/

BugReports https://github.com/Qile@317/einops/issues
Imports assertthat, FastUtils, glue, magrittr, 12r, R6, roperators

Suggests abind, grid, imager, knitr, lifecycle, lintr, lobstr,
rmarkdown, spelling, testthat (>= 3.0.0), torch, zeallot

Config/testthat/edition 3
VignetteBuilder knitr
Depends R (>=3.5)
LazyData true
Language en-US
NeedsCompilation no

Author Qile Yang [cre, aut, cph] (ORCID:
<https://orcid.org/0009-0005-0148-2499>)

Repository CRAN
Date/Publication 2025-09-03 21:40:08 UTC

https://openreview.net/forum?id=oapKSVM2bcj
https://openreview.net/forum?id=oapKSVM2bcj
https://github.com/Qile0317/einops
https://qile0317.github.io/einops/
https://github.com/Qile0317/einops/issues
https://orcid.org/0009-0005-0148-2499

2 einop

Contents
CINOP .« ¢ v v o e e e 2
EINOPS.TEPEAL e e e e e 3
CINOPS_IMAZE« v o it e e 5
IMAe_tENSOI v v ittt e e e e e e e e 5
parse_shape e e e 7
TEAITANZE .« « v v v v e 8
TedUCE o e e e e e e 9

Index 12

einop Perform Einstein-style tensor operations
Description

A unified interface for rearranging, reducing, and repeating tensor dimensions using Einstein notation-
inspired expressions. This was directly adapted from the python einop package: https://github.com/cgarciae/einop

einop() auto detects the operation type based on the provided expression:

* rearrange() when all input dimensions are present in output
* reduce() when some input dimensions are missing from output

* einops.repeat() when output contains dimensions not in input

Note that there are ongoing debates about the use of this function purely from the perspective of
code readability and maintainability: https://github.com/arogozhnikov/einops/issues/84.
Generally, some argue that the descriptive names of rearrange, reduce, and repeat encourage
good practices, while others think that semantically einop() actually makes it clearer what the
operation is doing, as opposed to mandating the use of these commonly used function names across
many packages.

Usage

einop(
X,
expr,
reduction = NULL,

D

.row_major = getOption("einops_row_major", FALSE)

)
Arguments
X tensor: array, matrix, or list of arrays of the same shape and type
expr string: reduction pattern
reduction A string specifying the reduction operation (e.g., "mean”, "sum", "max"). Re-

quired for reduce operations, ignored for rearrange and repeat operations.

https://github.com/arogozhnikov/einops/issues/84

einops.repeat 3

either corresponding axes lengths or a single list of them.

.row_major [Experimental] logical: whether to use row-major order for the output ten-
sor. If TRUE, the operation is performed in row-major order, but the output
will be in whatever order the parent framework uses (e.g. column-major for
base::array()).

Value

A tensor with dimensions transformed according to the expression

Examples

if (requireNamespace(”abind”, quietly = TRUE)) {

load a 3d tensor representing an rgb image

x <- get(data("einops_image"))[1, , , 1
Rearrange dimensions
einop(x, "h wc ->c hw")
Reduce dimensions
einop(x, "h wc -> h w", "mean”)
Repeat dimensions
einop(x[, , 11, "hw ->hwc", c = 3)
3
einops.repeat Allows reordering elements and repeating them in arbitrary combina-
tions.
Description

This operation includes functionality of repeat, tile, and broadcast functions.

Usage
einops.repeat(x, expr, ..., .row_major = getOption("einops_row_major", FALSE))
“repeat™ (x, expr, ..., .row_major = getOption("einops_row_major"”, FALSE))
Arguments
X tensor: array, matrix, or list of arrays of the same shape and type
expr string: reduction pattern

either corresponding axes lengths or a single list of them.

.row_major

Details

einops.repeat

[Experimental] logical: whether to use row-major order for the output ten-
sor. If TRUE, the operation is performed in row-major order, but the output
will be in whatever order the parent framework uses (e.g. column-major for
base::array()).

When composing axes, C-order enumeration is used (consecutive elements have different last axis).
Find more examples in the vignettes.

Value

tensor of the same type as input, with dimensions according to output pattern

Why can’t the function be called as repeat()?

repeat is a reserved keyword in R that acts the same as while(TRUE), and has no way of being
overridden. Hence, this function can only be called as einops.repeat() or using backticks as

“repeat” ().

Examples

if (requireNamespace("abind”, quietly = TRUE)) {

set.seed(42)

a grayscale image (of shape height x width)
image <- array(rnorm(30 * 40), dim = c(30, 40))

change it to RGB format by repeating in each channel
output <- einops.repeat(image, 'hw -> hwc', c = 3)
Visualize the output

as_image_tensor(output)

repeat image 2 times along height (vertical axis)
output <- einops.repeat(image, 'hw -> (r h) w', r = 2)

repeat image 2 times along height and 3 times along width
output <- einops.repeat(image, 'h w -> (h2 h) (w3 w)', h2 =2, w3 = 3)

convert each pixel to a small square 2x2, i.e. upsample an image by 2x
output <- einops.repeat(image, 'h w -> (h h2) (ww2)', h2 =2, w2 = 2)

'pixelate' an image first by downsampling by 2x, then upsampling
downsampled <- reduce(image, '(h h2) (w w2) -> h w', 'mean', h2 = 2, w2 = 2)

output <- einops.repeat(downsampled, 'h w -> (h h2) (w w2)', h2 = 2, w2

2)

as_image_tensor(einops.repeat(output, 'h w -> h w 3"))

einops_image 5

einops_image Example 4D Image Tensor for Einops

Description

An image_tensor () object that is a super thin wrapper around a 4D base: :array(), representing
image data in the format "b h w c¢" (batch, height, width, channels). The actual image data is 6
black letters on differently colored backgrounds, spelling out the word "einops". When printing this
object in the terminal it will automatically plot the images. To subset, use the [operator, and when
used with a single index, it will return a single image tensor.

Usage

einops_image

Format
An image_tensor () object with 6 images, each of size 96 x 96 pixels, with 3 color channels (RGB).
The images are stored in a 4D array with dimensions (6, 96, 96, 3).

Examples

data("einops_image")

for (i in seq_len(6)) print(einops_imageli, , , 1)
image_tensor Image Tensor: A thin wrapper around 2-4D arrays
Description

The image_tensor class provides a convenient way to work with image data in tensor format. It
extends the base array class and provides methods for conversion to/from various image formats,
plotting, and printing.

An image_tensor object represents image data in the format "h w ¢" (height, width, channels)
for single images, or "b h w ¢" (batch, height, width, channels) for batches of images, which is a
common format for deep learning frameworks. It also can be a 2D array, in which case it is treated
as a black and white image and shown as such.

The main utility of wrapping image data in the image_tensor class is that printing of the object
will automatically display the image as a plot, as long as the imager package is installed. Otherwise
it will simply print the dimension of the image.

Usage

as_image_tensor(x)

image_tensor(x)

6 image_tensor

Arguments

X An object to convert to or from image_tensor format.

Details

The image_tensor class provides the following methods (and more):

* as_image_tensor(): Generic function to convert objects to image_tensor format. Takes in
array-like objects of 2-4 dimensions. for 2 dimensional objects, it will convert them to 3D by
repeating the data across 3 channels, essentially converting grayscale images to RGB.

* as_image_tensor.default(): Default method that converts arrays to image_tensor
* as_image_tensor.cimg(): Method to convert cimg objects (from imager package) to image_tensor

* as.cimg.image_tensor(): Method to convert image_tensor objects back to cimg format
* [.image_tensor(): Subset method for image_tensor objects

* plot.image_tensor(): Plot method for image_tensor objects

* print.image_tensor(): Print method for image_tensor objects

Value

* as_image_tensor(): An object of class image_tensor

* as.cimg(): A cimg object (from imager package)
e [.image_tensor(): A subset of the image_tensor object. For 4D arrays with single index,
returns a 3D slice without the batch dimension.

plot(): Invisibly returns the input object

* print(): Invisibly returns the input object

Format

An image_tensor object is an array with dimensions in "h w ¢" format for single images, or "b h
w c" format for batches of images:

* h: height dimension (image height in pixels)
* w: width dimension (image width in pixels)
* c: channel dimension (RGB, only for 3D & 4D arrays)

* b: batch dimension (number of images, only for 4D arrays)

Options
The following options control the default behavior of image_tensor methods:

* plot_image_tensor_axes: Whether to show axes in plots (default: FALSE)
* print_image_tensor_as_plot: Whether to print images as plots (default: TRUE)

parse_shape 7

Examples

create from a matrix (grayscale)
img <- image_tensor(matrix(1:9, 3, 3))
print(img)

print(img[1:2, 1:21)

create from a 3D array (RGB image)
img_rgb <- as_image_tensor(array(runif(27), dim = c(3, 3, 3)))
print(img_rgb)

parse_shape Parse a tensor shape to dictionary mapping axes names to their
lengths.

Description

Use underscore to skip the dimension in parsing.

Usage
parse_shape(x, expr, ...)
Arguments
X tensor of any supported framework
expr character of length 1, space separated names for axes, underscore means skip
axis
additional arguments passed to methods
Value

named list, maps axes names to their lengths

Examples

if (requireNamespace("abind”, quietly = TRUE)) {

Use underscore to skip the dimension in parsing.
x <- array(@, dim = c(2, 3, 5, 7))
parse_shape(x, 'batch _ h w')

“parse_shape™ output can be used to specify axes_lengths for other
operations:

y <- array(@, dim = 700)

shape_info <- parse_shape(x, 'b _ h w')

rearrange(y, '(b ¢ hw) -=> b c hw', shape_info) would give shape
(2, 10, 5, 7)

8 rearrange

3
rearrange Reader-friendly smart element reordering for multidimensional ten-
sOrs.
Description

This operation includes functionality of transpose (axes permutation), reshape (view), squeeze, un-
squeeze, stack, concatenate and other operations.

Usage

rearrange(x, expr, ..., .row_major = getOption("einops_row_major", FALSE))

einops.rearrange(
X’
expr,

L

.row_major = getOption("einops_row_major", FALSE)

)
Arguments

X tensor: array, matrix, or list of arrays of the same shape and type

expr string: reduction pattern
either corresponding axes lengths or a single list of them.

.row_major [Experimental] logical: whether to use row-major order for the output ten-
sor. If TRUE, the operation is performed in row-major order, but the output
will be in whatever order the parent framework uses (e.g. column-major for
base::array()).

Details

When composing axes, C-order enumeration is used (consecutive elements have different last axis).
Find more examples in the vignettes.

Value

tensor of the same type as input, with dimensions according to output pattern

reduce

Examples

if (requireNamespace("abind”, quietly = TRUE)) {

suppose we have a set of 32 images in "h w c¢" format (height-width-channel)
images <- lapply(1:32, function(i) {

as_image_tensor(array(rnorm(30x40x3), dim = c(30, 40, 3)))
»

stacked and reordered axes to "b ¢ h w" format
y <- rearrange(images, 'b hwc ->b c hw')

concatenate images along height (vertical axis), 960 = 32 * 30
y <- rearrange(images, 'b hwc -> (b h) wc')

concatenated images along horizontal axis, 1280 = 32 * 40
y <- rearrange(images, 'b hwc ->h (bw) c')

flattened each image into a vector, 3600 = 30 * 40 * 3
y <- rearrange(images, 'b hwc ->b (c hw)')
split each image into 4 smaller quadrants, 128 = 32 x 2 x 2
y <- rearrange(
images, 'b (h1 h) (w1 w) ¢ => (b h1 w1) hwc', h1 =2, wl

1]
N

space-to-depth operation
y <- rearrange(
images, 'b (h h1) (wwl) ¢ => b hw (c ht w1)', h1 =2, wl =2

reduce Rearrangement and reduction in one step

Description

reduce() combines rearrangement and reduction using reader-friendly notation.

Usage

reduce(x, expr, func, ..., .row_major = getOption("einops_row_major"”, FALSE))

einops.reduce(
X,
expr,
func,

L

10 reduce

.row_major = getOption("einops_row_major", FALSE)

)
Arguments

X tensor: array, matrix, or list of arrays of the same shape and type

expr string: reduction pattern

func string or function: one of available reductions ('min’, ’'max’, ’sum’, 'mean’,
prod’, “any’, ’all’), or an R 2 argument function which takes in two arguments,
with the first being the tensor, and the second being an integer array indicating
the dimensions to reduce over.
either corresponding axes lengths or a single list of them.

.row_major [Experimental] logical: whether to use row-major order for the output ten-
sor. If TRUE, the operation is performed in row-major order, but the output
will be in whatever order the parent framework uses (e.g. column-major for
base::array()).

Value

tensor of the same type as input, with dimensions according to output pattern

Examples

if (requireNamespace("abind”, quietly = TRUE)) {

set.seed(42)
Suppose x is a 3D array: 100 x 32 x 64
x <= array(rnorm(100 x 32 x 64), dim = c(100, 32, 64))

perform max-reduction on the first axis
Axis t does not appear on RHS - thus we reduced over t
y <- reduce(x, 't bc ->bc', 'max')

ETS

same as previous, but using verbose names for axes
y <- reduce(x, 'time batch channel -> batch channel', 'max')

let's pretend now that x is a batch of images
with 4 dims: batch=10height = 20width = 3@channel = 40
X <= array(rnorm(10 * 20 * 30 * 40), dim = c(10, 20, 30, 40))

2d max-pooling with kernel size = 2 x 2 for image processing
y1 <= reduce(x, 'b ¢ (h1 h2) (wl w2) -> b c h1 wl', 'max', h2 = 2, w2 = 2)
as_image_tensor(y1)

same as previous, using anonymous axes,

note: only reduced axes can be anonymous

y1 <- reduce(x, 'b c (h1 2) (wl 2) -> b c h1 w1', 'max')
as_image_tensor(y1)

adaptive 2d max-pooling to 3 * 4 grid,

reduce

each element is max of 10x10 tile in the original tensor.

dim(reduce(x,

'b ¢ (h1 h2) (w1l w2) -=> b c hl wl',

(10, 20, 3, 4)

Global average pooling

dim(reduce(x,
(10, 20)

}

'bchw->bc', 'mean'))

max

1
’

h1

3, wl = 4))

11

Index

x datasets
einops_image, 5

as_image_tensor (image_tensor), 5

base::array(), 3-5, 8, 10

einop,

2

einops.
einops.
einops.
einops.

einops

rearrange (rearrange), 8
reduce (reduce), 9
repeat, 3

repeat(), 2

image, 5

image_tensor, 5
image_tensor(), 5

parse_shape, 7

rearrange, 8
rearrange(), 2

reduce, 9

reduce(), 2, 9

repeat (einops.repeat), 3

12

	einop
	einops.repeat
	einops_image
	image_tensor
	parse_shape
	rearrange
	reduce
	Index

