## ----include = FALSE------------------------------------------------------------------------------ knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----installation, eval = FALSE------------------------------------------------------------------- # devtools::install_github("beckerbenj/eatGADS") ## ----library, message = FALSE--------------------------------------------------------------------- # loading the package library(eatGADS) ## ----import_spss, eval = FALSE-------------------------------------------------------------------- # # importing an SPSS file # gads <- import_spss("path/example.sav") ## ----import data into r, eval = FALSE------------------------------------------------------------- # # importing text files # input_txt <- read.table("path/example.txt", stringsAsFactors = FALSE) # # importing German csv files (; separated) # input_csv <- read.csv2("path/example.csv", stringsAsFactors = FALSE) # # importing Excel files # input_xlsx <- readxl::read_excel("path/example.xlsx") ## ----import_raw----------------------------------------------------------------------------------- # Example data set df <- data.frame(ID = 1:4, sex = c(0, 0, 1, 1), forename = c("Tim", "Bill", "Ann", "Chris"), stringsAsFactors = FALSE) # Example variable labels varLabels <- data.frame(varName = c("ID", "sex", "forename"), varLabel = c("Person Identifier", "Sex as self reported", "first name as reported by teacher"), stringsAsFactors = FALSE) # Example value labels valLabels <- data.frame(varName = rep("sex", 3), value = c(0, 1, -99), valLabel = c("male", "female", "missing - omission"), missings = c("valid", "valid", "miss"), stringsAsFactors = FALSE) df varLabels valLabels # import gads <- import_raw(df = df, varLabels = varLabels, valLabels = valLabels) ## ----print gads----------------------------------------------------------------------------------- # Inpsect resulting object gads ## ----save gads, eval = FALSE---------------------------------------------------------------------- # # Inpsect resulting object # saveRDS(gads, "path/gads.RDS") ## ----extractMeta---------------------------------------------------------------------------------- # Inpsect resulting object extractMeta(gads, vars = c("sex")) extractMeta(gads) ## ----extractData, message = FALSE----------------------------------------------------------------- # Extract data without applying labels dat1 <- extractData(gads, convertMiss = TRUE, convertLabels = "numeric") dat1 dat2 <- extractData(gads, convertMiss = TRUE, convertLabels = "character") dat2 ## ----modify wrappers------------------------------------------------------------------------------ ### wrapper functions # Modify variable labels gads2 <- changeVarLabels(gads, varName = c("ID"), varLabel = c("Test taker ID")) extractMeta(gads2, vars = "ID") # Modify variable name gads3 <- changeVarNames(gads, oldNames = c("ID"), newNames = c("idstud")) extractMeta(gads3, vars = "idstud") extractData(gads3) # recode GADS gads4 <- recodeGADS(gads, varName = "sex", oldValues = c(0, 1, -99), newValues = c(1, 2, 99)) extractMeta(gads4, vars = "sex") extractData(gads4, convertLabels = "numeric") ## ----modify changeTable--------------------------------------------------------------------------- # extract changeTable varChanges <- getChangeMeta(gads, level = "variable") # modify changeTable varChanges[varChanges$varName == "ID", "varLabel_new"] <- "Test taker ID" # Apply changes gads5 <- applyChangeMeta(varChanges, gads) extractMeta(gads5, vars = "ID") ## ----write spss, eval = FALSE--------------------------------------------------------------------- # write_spss(gads, "path/example_out.sav") ## ----export to haven, eval = TRUE----------------------------------------------------------------- haven_dat <- export_tibble(gads) haven_dat lapply(haven_dat, attributes)