
Elastic computing with R and Redis

Bryan W. Lewis

blewis@illposed.net

May 1, 2023

1 Introduction

The doRedis package de�nes a foreach parallel computing adapter using Redis
and the redux package. It lets users easily run parallel jobs across multiple R
sessions over one or more computers.

Steve Weston's foreach package is a remarkable parallel computing frame-
work for the R language, similar to lapply-like functions but structured as a
for loop. Similarly to R's native parLapply and mclapply functions, foreach
lets you do this in parallel across multiple CPU cores and computers, abstract-
ing the parallel computing details away into modular adapters. Code written
using foreach works sequentially in the absence of a parallel adapter, and works
uniformly across di�erent adapters, allowing programmers to write code inde-
pendently of speci�c parallel computing implementations. The foreach package
has many nice features outlined in its package documentation.

Redis is a fast, persistent, networked in-memory key/value database with
many innovative features, among them a blocking queue-like data structure
(Redis �lists�). This feature makes Redis useful as a lightweight adapter for
parallel computing. The redux package de�nes an R interface to Redis based
on the hiredis C library.

1.1 Why doRedis?

Why write a doRedis package? After all, the foreach package already has
available many parallel adapter packages, including doMC, doSNOW and doMPI.

The key features of doRedis are elasticity, fault-tolerance, and portability
across operating system platforms. The doRedis package is well-suited to small
to medium-sized parallel computing jobs, especially across ad hoc collections of
computing resources.

� doRedis allows for dynamic pools of workers. New workers may be added
at any time, even in the middle of running computations. This feature
is geared for modern cloud computing environments. Users can make an
economic decision to �turn on� more computing resources at any time
in order to accelerate running computations. Similarly, modern cluster

1

resource allocation systems can dynamically schedule R workers as cluster
resources become available.

� doRedis computations are partially fault tolerant. Failure of worker R
processes (for example due to a machine crash or simply scaling back
elastic resources) are automatically detected and the a�ected tasks are
automatically re-submitted.

� doRedis makes it particularly easy to run parallel jobs across di�erent
operating systems. It works equally well on GNU/Linux, Mac OS X, and
Windows systems, and should work well on most POSIX systems. Back
end parallel R worker processes are e�ectively anonymous�they may run
anywhere as long as all the R package dependencies required by the task
at hand are available.

� The foreach package generally allows intermediate results to be aggre-
gated incrementally and in- or out-of order, signi�cantly reducing required
memory overhead for problems that return large data (not all foreach
adapters support this but doRedis does).

� The key bene�t of the foreach package is clear separation of program
and run-time parallel computing dependencies. This allows R scripts and
packages to indicate code that can bene�t from parallel computation, while
leaving the particular choice of implementation up to users at run-time.

2 Obtaining and Con�guring the Redis server

Redis is an extremely popular open source networked key/value database, and
operating system-speci�c packages are available for all major operating systems,
including Windows. For more information see: https://redis.io/download.

The Redis server is completely con�gured by the �le redis.conf. It's im-
portant to make sure that the timeout setting is set to 0 in the redis.conf

�le when using doRedis. You may wish to peruse the rest of the con�guration
�le and experiment with the other server settings. In particular if you plan to
contact Redis from more than one computer make sure that it's con�gured to
listen on all appropriate network interfaces.

3 doRedis Examples

Let's start by exploring the operation of some doRedis features through a few
examples. Unless otherwise noted, we assume that Redis is installed and running
on the local computer (�localhost�).

2

3.1 A Really Simple Example

The simple example below is one version of a Monte Carlo approximation of
π. Variations on this example are often used to illustrate parallel programming
ideas.

> library("doRedis")

> registerDoRedis("RJOBS")

> startLocalWorkers(n=2, queue="RJOBS")

> foreach(icount(10), .combine=sum,

+ .multicombine=TRUE, .inorder=FALSE) %dopar%

+ 4 * sum((runif(1e6) ^ 2 + runif(1e6) ^ 2) < 1) / 1e7

>

> # [1] 3.144212

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●
●

● ●
●

●

● ●●

● ●

●

●

●

●

●
●

●

●

The �gure illustrates how the method works. We randomly choose points in the
unit square. The ratio of points that lie inside the arc of the unit circle (green)
to the total number of points provides an approximation of the area of 1/4 the
area of the unit circle�that is, an approximation of π/4. Each one of the 10
iterations (�tasks� in doRedis) of the loop computes a scaled approximation of
π using 1,000,000 such points. We then sum up each of the 10 results to get an
approximation of π using all 10,000,000 points.

The doRedis package uses the idea of a �work queue� to dole out jobs to
available resources. Each doRedis job is composed of a set of one or more tasks.
Each task consists of one or more foreach loop iterations. Worker R processes
listen on the work queue for new jobs. The line
registerDoRedis("RJOBS")

registers the doRedis adapter with the foreach %dopar% operator using the
user-speci�ed work queue name �RJOBS� (you are free to use any name you
wish for the work queue). R can issue work to a work queue even if there aren't
any workers yet.

The next line:
startLocalWorkers(n=2, queue="RJOBS")

3

starts up two worker R sessions on the local computer, both listening for work on
the queue named �RJOBS� The worker sessions display only minimal messages
by default. The startLocalWorkers function can instruct the workers to log
messages to output �les or stdout if desired. You can verify that workers are in
fact waiting for work with:
getDoParWorkers()

which should return 2, for the two workers we just started. Note that the
number of workers may change over time (unlike most other parallel back ends
for foreach). The getDoParWorkers function returns the current number of
workers in the pool, but the number returned should only be considered to be
an estimate of the actual number of available workers. The next lines actually
run the Monte Carlo code:
foreach(icount(10), .combine=sum, .multicombine=TRUE, .inorder=FALSE)

%dopar%4 * sum((runif(1e6) ^ 2 + runif(1e6) ^ 2) < 1) / 1e7

This parallel loop consists of 10 iterations (tasks in this example) using the
icount iterator function. We specify that the results from each task should
be passed to the sum function with .combine=sum. Setting the .multicombine
option to TRUE tells foreach that the .combine function accepts an arbitrary
number of function arguments (some aggregation functions only work on two ar-
guments). The .inorder=FALSE option tells foreach that results may be passed
to the .combine function as they arrive, in any order. The %dopar% operator
instructs foreach to use the doRedis adapter that we previously registered
to place each task in the work queue. Finally, each iteration runs the scaled
estimation of π using 1,000,000 points.

3.2 Fault tolerance

Parallel computations managed by doRedis tolerate failures among the worker
R processes. Examples of failures include crashed worker R sessions, operating
system crash or reboot, and power outages. Fault tolerance enables elasticity�
the pool of workers can be reduced at any time by simply turning them o�
without disturbing the running computation. When a failure is detected, af-
fected tasks are automatically re-submitted to the work queue. The option
ftinterval sets an upper bound on how frequently doRedis checks for failure.
The default value is 30 seconds, and the minimum allowed value is three seconds.
(Very frequent checks for failure increase overhead and will slow computations
down�the default value is usually reasonable.)

The following code listing presents a contrived but self-contained example
of fault tolerance.

> require("doRedis")

> registerDoRedis("RJOBS", ftinterval=5, chunkSize=2)

> startLocalWorkers(n=4, queue="RJOBS", linger=1)

> cat("Workers started.\n")

> start <- Sys.time()

> x <- foreach(j=1:4, .combine=sum) %dopar%

+ {

4

+ if(difftime(Sys.time(), start) < 5) quit(save="no") else j

+ }

> removeQueue("RJOBS")

The example starts up four local worker processes and submits two tasks
to the work queue �jobs.� (There are four loop iterations�j=1,2,3,4, but the
chunkSize option splits them into two tasks of two iterations each.) The paral-
lel code block in the foreach loop instructs worker processes to quit if less than
5 seconds have elapsed since the start of the program. Note that the start

variable is de�ned by the master process and automatically exported to the
worker process R environment by foreach�a really nice feature! The termina-
tion criterion will a�ect the �rst two workers that get tasks, resulting in their
immediate exit and simulating crashed R sessions.

Meanwhile, the master process has a fault check period set to 5 seconds
(the ftinterval=5 parameter), and after that interval will detect the fault and
re-submit the failed tasks.

The remaining two worker processes pick up the re-submitted tasks, and
since the time interval will be su�ciently past the start, they will �nish the
tasks and return their results.

The fault detection method is simple but fairly robust. It's described in
detail in Section 4.

3.3 A Parallel boot Function

The code listing below presents a parallel-capable variation of the boot function
from the boot package. The bootForEach function uses foreach to distributed
bootstrap processing to available workers. It has two more arguments than the
standard boot function: chunks and verbose. Set verbose=TRUE to enabled
worker process debugging. The bootstrap resampling replicates will be divided
into chunks tasks for processing by foreach. The example also illustrates the
use of a custom combine function in the foreach loop.

> bootForEach <- function (data, statistic, R, sim="ordinary",

+ stype="i", strata=rep(1, n), L=NULL, m=0,

+ weights=NULL, ran.gen=function(d, p) d,

+ mle=NULL, simple=FALSE, chunks=1,

+ verbose=FALSE, ...)

+ {

+ thisCall <- match.call()

+ n <- if (length(dim(data)) == 2) nrow(data)

+ else length(data)

+ if(R < 2) stop("R must be greater than 1")

+ Rm1 <- R - 1

+ RB <- floor(Rm1 / chunks)

+

+ combo <- function(...)

+ {

+ al <- list(...)

5

+ out <- al[[1]]

+ t <- lapply(al, "[[", "t")

+ out$t <- do.call("rbind", t)

+ out$R <- R

+ out$call <- thisCall

+ class(out) <- "boot"

+ out

+ }

+

+ # We define an initial bootstrap replicate locally. We use this

+ # to set up all the components of the bootstrap output object

+ # that don't vary from run to run. This is more efficient for

+ # large data sets than letting the workers return this information.

+ binit <- boot(data, statistic, 1, sim = sim, stype = stype,

+ strata = strata, L = L, m = m, weights = weights,

+ ran.gen = ran.gen, mle=mle, ...)

+

+ foreach(j=icount(chunks), .inorder=FALSE, .combine=combo,

+ .init=binit, .packages=c("boot","foreach"),

+ .multicombine=TRUE, .verbose=verbose) %dopar% {

+ if(j == chunks) RB <- RB + Rm1 %% chunks

+ res <- boot(data, statistic, RB, sim = sim, stype = stype,

+ strata = strata, L = L, m = m, weights = weights,

+ ran.gen = ran.gen, mle=mle, ...)

+ list(t=res$t)

+ }

+ }

4 Technical Details

A foreach loop iteration is a parameterized R expression that represents a unit
of work. The expression is the body of the foreach loop and the parameters,
if they exist, are the loop variables. It's also possible to use foreach non-
parametrically with an anonymous iterator to simply replicate the loop body
expression a number of times similar to replicate. The iterations are enumer-
ated so that foreach can put the results together in order if required.

A task is a collection of one or more loop iterations. The number of iterations
per task is at most chunkSize.

A job is a collection of one or more tasks that covers all the iterations required
by a single foreach loop. Each job is assigned a unique identi�er.

Jobs are submitted as a sequence of tasks to a work queue�technically, a
special Redis value called a �list� that supports blocking reads. Users choose the
name of the work queue in the registerDoRedis function. Master R programs
that issue jobs wait for results on yet another blocking Redis list, a result queue
associated with the job.

R workers listen on work queues for tasks using blocking reads. As shown
in the last section the number of workers is dynamic. It's possible for workers

6

to listen on queues before any jobs exist, or for masters to issue jobs to queues
without any workers available.

4.1 Job control functions

The package includes a few convenience functions for monitoring and control-
ling doRedis work. The simplest, setProgress(TRUE), turns on a standard R
progress indicator for subsequent doRedis foreach loops. It's a handy way to
monitor progress at a glance.

Because the controlling R program blocks while it waits for doRedis tasks
to �nish, most other job monitoring and control functions must be run from a
di�erent R session. They include:

� jobs() returns a data frame that lists all running jobs and information
about them

� tasks() returns a data frame of running tasks

� removeQueue() remove Redis keys associated with a doRedis work queue

� removeJob() remove all remaining tasks associated with a speci�ed job
in the work queue

The tasks() function lists the Redis queue name of each running task, the
job id associated with it, the user running the job, from which computer I.P.
address the job was submitted, the I.P. address of the computer on which the
task is running, which loop iterations make up the task, and the user and process
ID if the R process running the task.

Note that tasks may linger in the task list for a brief period after they are
�nished running.

The removeQueue() function removes all the Redis keys associated with
the speci�ed work queue. doRedis workers listening on that queue will then
eventually quit after they are �nished processing their running jobs, and after
the queue linger period has elapsed.

The removeJob() function works similarly, but only prunes keys and re-
maining work items associated with a speci�c job ID.

Note that in-�ight loop iterations will continue to run to completion, even
if their associated job or work queue has be removed. If you really need to stop
a worker R process, you can identify its process ID and computer IP address
from the tasks() function and manually terminate it.

4.2 Redis Key Organization

The �work queue� name speci�ed in the registerDoRedis and redisWorker

functions is used as the root name for a family of Redis keys used to organize
computation. Figure 2 illustrates example Redis keys used by a master and
worker R processes for a work queue named �myjobs�, described in detail below.

7

Figure 1: Example doRedis keys for an example work queue named �myjobs�

The name of the work queue illustrated in Figure 2 is �myjobs.� The corre-
sponding Redis key is also named �myjobs� and it's a Redis list value type (that
is, a queue). Such a queue can be set up, for example, with
registerDoRedis(queue="myjobs").

Removal of the �jobs.live� key serves as a signal that the work queue has
been removed, for example with the removeQueue("myjobs") function. After
this happens, R workers listening on the queue will clean up any Redis keys that
they created and terminate after a timeout period.

A counter key named �myjobs.count� enumerates the number of R worker
processes registered on the queue. It is only an estimate of the number of
workers currently registered to accept work on the queue.

foreach assigns every job an R environment with state required to execute
the loop expression. The example in Figure 2 illustrates a job environment for
the �myjobs� queue and the �jobID� job called �myjobs.env.jobID� R worker
processes working on �jobID� will download this environment key once (inde-
pendently of the number of tasks they run for the job).

doRedis pushes the tasks (loop iterations) associated with �jobID� into the
�myjobs� queue using the labels �jobID.n�, where n is the number of each task,
n=1, 2,

R workers listen on the �myjobs� queue for tasks. It's a blocking queue, but
the workers periodically time out. After each time out they check to see if the
�myjobs.live� key still exists, and if it doesn't they clean up their Redis keys and
terminate. If it's still there, they loop and listen again for jobs.

When a job/task announcement arrives in the �myjobs� queue, a worker
downloads the new task from the �myjobs� queue. The worker then:

1. Checks the job ID to see if it already has the job environment. If it doesn't
it downloads it (from �myjobs.env.jobID� in the example) and initializes

8

a new R environment speci�c to this job ID.

2. The R worker process initializes a task started key, illustrated in Figure 2
as �myjobs.start.jobID.taskID�.

3. The R worker process initializes a thread that maintains a task liveness
key, illustrated in Figure 2 as �myjobs.alive.jobID.taskID�.

4. When a task completes, the worker places the result in a job result queue
for that job ID, shown in Figure 2 as �myjobs.out.jobID�, and then removes
its corresponding start and alive keys.

Meanwhile, the R master process is listening for results on the job result
queue, shown in Figure 2 as �myjobs.out.jobID� Results arrive from the workers
as R lists of the form list(id=result), where id corresponds to the task ID
number and result to the computed task result. foreach can use the task
ID number to cache and order results, unless the option .inorder=FALSE was
speci�ed.

4.3 Worker Fault Detection and Recovery

While running, each task is associated with two keys described in the last sec-
tion: a task �start� key and a task �alive� key. The �start� key is created by an R
worker process when a task is downloaded. The �alive� key is a Redis ephemeral
key with a relatively short time out (after which it disappears). Each R worker
processes maintains a background thread that keeps the ephemeral �alive� key
active while the task runs. If for some reason the R worker process crashes, or
the work system crashes or reboots, or the network fails, then the �alive� key
will time out and be removed from Redis.

After foreach sets up a job, the master R process listens for results on the
associated job ID results queue. It's a blocking read, but the master R process
periodically times out. After each time out, the master examines all the �start�
and �alive� keys associated with the job. If it �nds an imbalance in the keys (a
start key without a corresponding alive key), then the master R process assumes
that task has failed and resubmits the failed task to the work queue.

It's possible that a wayward R worker process might return after its task has
been declared lost. This might occur, for example, under intermittent network
failure. In such cases, results for tasks might be returned more than once in
the result queue, but doRedis is prepared for this and simply discards repeated
results for the same task ID.

Another possible failure may occur if a worker consumes and completes a
task but is somehow unable to push its results into the results queue. When
all the tasks in a queue have been consumed by workers, the master checks
for such �lost� results�tasks whose results have not been received nor exhibit
a corresponding �start� key indicating that they are in process. If such a task
imbalance is found, a�ected tasks are re-submitted.

9

4.4 Random Number Generator Seeds

The initialization of pseudorandom number generators is an important con-
sideration, especially when running large simulations in parallel. As of package
version 3, default L'Ecuyer-CMRG support was removed to comply with CRAN
policy. The worker processes now default to the same pseudorandom number
generator used by the coordinator R process. Each loop iteration is initialized
reproducibly using set.seed, making parallel random number generation re-
producible regardless of the number of workers or chunk size settings. Simply
set the random seed prior to a foreach loop as you would do in a sequential
program.

The doRedis package includes a mechanism to de�ne an arbitrary random
seed initialization function. Such a function could be used, for example, with
the SPRNG library or with the doRNG package for foreach, or for manual exper-
imentation.

The user-de�ned random seed initialization function must be called
set.seed.worker, take one argument and must be exported to the workers
explicitly in the foreach loop. The example shown below illustrates a simple
user-de�ned seed function.

> startLocalWorkers(n=5, queue="jobs")

> registerDoRedis("jobs")

> # Make all the workers use the same random seed initialization and the old

> # "Super-Duper" RNG:

> set.seed.worker <- function(n) {

+ RNGkind("Super-Duper")

+ set.seed(55)

+ }

> foreach(j=1:5, .combine="c", .export="set.seed.worker") %dopar% runif(1)

>

> #[1] 0.2115148 0.2115148 0.2115148 0.2115148 0.2115148

4.5 Known Problems and Limitations

If CTRL+C (or the RStudio "Stop" button) is pressed while a foreach loop is
running, connection to the Redis server may be lost or enter an unde�ned state.
An R session can reset connection to a Redis server at any time by issuing
redisClose() followed by re-registering the doRedis back end.

Redis limits database values to less than 512MB. Neither the foreach loop
parameters nor the job environment may exceed this size. If you need to work
on chunks of data larger than this, see the Advanced Topics section for examples
of working on already distributed data in place.

5 Advanced Topics

Let's start this section by dealing with the 512MB Redis value size limit. Prob-
lems will come along in which you'll need to get more than 512MB of data to

10

the R worker processes. There are several approaches that one might take:

1. Distribute the data outside of Redis, for example through a shared dis-
tributed �le system like PVFS or Lustre, or through another database.

2. Break the data up into chunks that each �t into Redis and use Redis to
distribute the data.

The �rst approach is often a good one, but is outside of the scope of this vignette.
We illustrate the second approach in the following example. For the purposes of
illustration, the example matrix is tiny and we break it up into only two chunks.
But the idea extends directly to very large problems.

> registerDoRedis("jobs")

> set.seed(1)

> A <- matrix(rnorm(100), nrow=10) # (Imagine that A is really big.)

> # Partition the matrix into parts small enough to fit into Redis values

> # (less than 512 MB). We partition our example matrix into two parts:

>

> A1 <- A[1:5,] # First five rows

> A2 <- A[6:10,] # Last five rows

> # Let's explicitly assign these sub-matrices as Redis values.

> # Manually breaking up the data like this helps avoid putting

> # too much data in the R environment exported by foreach.

>

> redisSet("A1", A1)

> redisSet("A2", A2)

> ans <- foreach(j=1:2, .combine=c) %dopar% {

+ chunk <- sprintf("A%d", j)

+ mychunk <- redisGet(chunk)

+ sum(mychunk)

+ }

> print(ans)

>

> # [1] 6.216482 4.672254

The point of the example above is that the workers explicitly download just
their portion of the data inside the foreach loop. This avoids putting the data
into the exported R environment, which could exceed the Redis 2GB value size
limit. The example also avoids sending data to workers that they don't need.
Each worker downloads just the data it needs and nothing more.

5.1 Canceling jobs

When a master R session is interrupted, for example by CTRL+C or by pressing
the �stop� button in RStudio (or by pressing the Escape key on some systems),
foreach will perform the following steps:

1. Delete all tasks associated with the active job in the corresponding work
queue

11

2. Stop collecting results for the active job

3. Return control to the R console

Importantly, interrupting a running job only prevents future work from running
on the worker processes. Any in-process tasks on the workers will continue to
run until they �nish. A possible side-e�ect is that tasks from running jobs may
place their result in orphaned result queues (Redis keys) at some point after
the job has been cancelled. Spurious output may be manually cleaned up by
deleting keys associated with the task queue and job ID.

5.2 worker.init

If you explicitly export a function named worker.init that takes no arguments,
it will be run by the workers once just after downloading a new job environment.
The function may contain any worker initialization code not be appropriate for
the body of the foreach loop that only needs to run once per job, independently
of the number of tasks that might run on a particular worker.

5.3 Worker queues

Worker R processes consume work from work queues on a �rst-come, �rst-served
basis. Tasks are evaluated in an environment speci�c to each submitted job,
thus it is possible and normal for workers to interleave tasks for multiple jobs
submitted to a given work queue.

Worker R processes can also block on multiple work queues, pulling �rst
available tasks as they arrive, see ?redisWorker and ?startLocalWorkers for
details. The advantage of using multiple work queues is that they can be man-
aged independently, for example making multi-user use of shared R workers
somewhat simpler to administrate.

6 All doRedis foreach options

All options can be set using the standard foreach interface (example shown be-
low) or by using the special setProgress(), setChunkSize(), setFtinterval,
and setStream functions. Additionally, the package de�nes two special func-
tions to explicitly set variable exports and packages: setExport() and
setPackages().

Thus,

foreach(j=1:10, .options.redis = list(chunksize=5))

is equivalent to

setChunkSize(5)

foreach(j=1:10)

12

The package provides the extra set* functions to facilitate working with R packages
that use foreach internally. In such cases it might not be practical to directly supply
arguments to the foreach invocation (used within the package). The set* functions
provide a way to register an external foreach adapter and control its behavior. When
both forms of setting options are used, the set* functions take precedence (which lets
you override the default behavior in another R package, for example).

Here is a list of all doRedis-speci�c options and what they do.

� chunksize (integer) break the loop iterations up into chunks of at most the
speci�ed size, equivalent to chunkSize

� progress (logical) display an R progress bar

� ftinterval (integer) fault tolerance check interval in seconds, not allowed to be
less than 3

� reduce (function) optional per-task reduction function

13

