Package ‘cre.dcf’

January 12, 2026

Title Discounted Cash Flow Tools for Commercial Real Estate
Version 0.0.3
Date 2025-12-10

Description Provides 'R’ utilities to build unlevered and levered discounted cash
flow (DCF) tables for commercial real estate (CRE) assets. Functions generate
bullet and amortising debt schedules, compute credit metrics such as debt
coverage ratios (DCR), debt service coverage ratios (DSCR), interest coverage
ratios, debt yield ratios, and forward loan-to-value ratios (LTV) based on net
operating income (NOI). The toolkit evaluates refinancing feasibility under
alternative market scenarios and supports end-to-end scenario execution from a
YAML (YAML Ain't Markup Language) configuration file parsed with 'yaml'.
Includes helpers for sensitivity analysis, covenant diagnostics, and
reproducible vignettes.

License MIT + file LICENSE

Encoding UTF-8

Language en

Depends R (>=4.1)

Imports checkmate, dplyr, magrittr, purrr, stats, tibble, utils, yaml

Suggests ggplot2, knitr, readr, rmarkdown, scales, testthat (>=
3.0.0), tidyr

Config/testthat/edition 3

VignetteBuilder knitr

RoxygenNote 7.3.3

LazyData true

NeedsCompilation no

Author Kevin Poisson [aut, cre]

Maintainer Kevin Poisson <kevin.poisson@parisgeo.cnrs.fr>
Repository CRAN

Date/Publication 2026-01-12 18:50:21 UTC

2 Contents

Contents
add_credit_ratios e e e e e e 3
AS_ TALE . . . o et e e e e e e 5
as_yaml . . .o 5
build_lease_table e 6
cfg_explain e e e 7
cfg_missing e e e 7
cfg_ normalize L. e 8
cfg_validate 9
cf_ compute_levered L 9
cf make full table 10
compare_financing_sCenarioso i u e e e e e 12
compute_equity_invest i e e e e e e e e e e e 13
compute_leveraged_metricso e e e e e e e e e 14
compute_noi_yl e 14
compute_unleveraged_metrics oLl e e 15
Cre_glOSSATY . . o v v v v vt i e e e e e e e e e e e 15
def_add_noi_columns e 16
def calculate e 17
def_read_config 19
def_spec_template 19
def_write_yaml_template 20
debt_built_schedule 20
derive_exit_yield 21
flag_covenants 22
forward_value_from_noi e 22
get_cfg . . 23
gUATd_TAte e e e e e e e e e e e e e e e e e 24
init_debt_fees e e 24
Ir_partition e 25
irr_safe . . . L e e 25
leases_tbl_structuration o e e e e 26
NPV_TALE . . . o v v e i e e e e e e e e e e e e e e e e e 27
price_from_cap 27
TUDN_CASE . & v v v v v e e e e e e e e e e e e s 28
run_from_config e 29
select_terminal_noi e e e 30
simulate_shock e 31
styles_breach_counts L L L 32
styles_break_even_exit_yield oL 33
styles_distressed_exit L. 34
styles_equity_cashflows 35
styles_exit_sensitivity e e e e e e e 36
styles_growth_sensitivityo e e 37
styles_manifest e e 38
styles_pv_split 39

styles_revalue_yield_plus_growth 40

add_credit_ratios 3

SWEEP_SENSItIVILIES o e e e e e e e e 41

test refl e e 41

Index 43
add_credit_ratios Add credit ratios for debt service, interest cover, debt yield, and for-

ward loan-to-value

Description

Align a project cash-flow table with a debt schedule and compute standard credit ratios for each
period:

* debt service coverage ratio (DSCR),

e interest cover ratio (ICR),

* initial and current debt yield,

* forward loan-to-value (LTV) based on next-period NOI.

Optionally, simple covenant flags are added when threshold values are supplied.

Usage
add_credit_ratios(
cf_tab,
debt_sched,
exit_yield,
covenants = NULL,
dscr_basis = c("noi"”, "gei"”, "cfads"),

cfads_ti_lc = NULL,
ignore_balloon_in_min = FALSE,
maturity_year = NULL

)
Arguments

cf_tab A data.frame or tibble of project cash flows over years 0..N, typically the out-
put of dcf_calculate() or cf_make_full_table(). It must at least contain a
year column and either net_operating_income or gei. When available, the
following columns are used: opex, cf_pre_debt, capex_recur, leasing_costs,
loan_init.

debt_sched A data.frame or tibble representing the debt schedule, typically the output of
debt_built_schedule(). It must contain year, payment, interest, and outstanding_debt,
and may also include debt_draw and loan_init.

exit_yield Numeric scalar; exit yield (in decimal form, for example 0.05) used to compute

forward values as NOI_next / exit_yield.

4 add_credit_ratios

covenants Optional list with elements dscr_min, 1tv_max and/or debt_yield_min. When
supplied, the function adds simple covenant indicators to the output table.

snon

dscr_basis Character string specifying the numerator used for DSCR. One of "noi”, "gei"
or "cfads”. The default is "noi"”.

cfads_ti_lc Optional object used to construct a CFADS adjustment for tenant-improvement
or leasing-cost allowances. If a list, the element annual_allowance (numeric
scalar or vector) is subtracted from NOL. If a function, it is called as cfads_ti_lc(cf_tab)
and the returned numeric vector is subtracted from NOL.
ignore_balloon_in_min
Logical scalar. If TRUE and maturity_year is not NULL, the attribute "min_dscr_pre_maturity”
is attached to the result and stores the minimum DSCR computed only over years
1 to maturity_year - 1, ignoring any balloon repayment at maturity.

maturity_year Optional integer scalar giving the contractual maturity year of the facility. Pe-
riods with year >maturity_year are treated as post-maturity (no outstanding
debt, no payment, no interest). This parameter is required when ignore_balloon_in_min
= TRUE.

Value
A tibble equal to cf_tab with the following additional columns:

e gei, noi (created if missing),

* payment, interest, outstanding_debt,

e noi_fwd, value_forward,

e dscr, interest_cover_ratio,

e debt_yield_init, debt_yield_current,

e 1tv_forward,

* covenant indicators when covenants is supplied.

When ignore_balloon_in_min = TRUE and maturity_year is provided, the object also carries an
attribute "min_dscr_pre_maturity” containing the minimum DSCR before maturity.

Examples

cf_tab <- data.frame(
year = 0:3,
gei c(o, 120, 123, 126),
opex = c(0, 40, 41, 42),
loan_init = c(2000, NA, NA, NA)
)

debt_sched <- data.frame(
year = 0:3,
payment = c(@, 150, 150, 2150),
interest = c(0, 100, 95, 90),
outstanding_debt = c(2000, 2000, 1950, 1900),
debt_draw = c(2000, 0, 0, 0)

as_rate 5

out <- add_credit_ratios(
cf_tab = cf_tab,
debt_sched = debt_sched,
exit_yield = 0.05,
covenants = list(dscr_min = 1.10, ltv_max = 0.70)

)

out

as_rate Rate conversion (decimal vs bps)

Description

Rate conversion (decimal vs bps)

Usage
as_rate(dec = NULL, bps = NULL)

Arguments
dec numeric(1). Decimal rate.
bps numeric(1). Basis points.
Value

numeric(1) as decimal.

as_yaml Serialize a validated configuration list to YAML

Description

Validates a configuration list against the package grammar using cfg_validate() and serializes it
to a YAML file on disk. This helper is intended for reproducibility and interoperability, allowing
a fully specified in-memory configuration to be persisted and reused in subsequent runs or edited
manually by users.

Validates config and writes it to path as 'YAML'.

Usage
as_yaml(config, path)

as_yaml(config, path)

6 build_lease_table

Arguments
config List specification following the package grammar.
path Output file path (for example "case.yml").
Details

The function performs validation before writing to disk. If validation fails, an error is raised and
no file is written. The YAML output is a direct serialization of the validated configuration list and
therefore preserves all fields, including nested structures.

Value

The input path, returned invisibly, to allow use in pipelines.

The input path, invisibly.

Examples

tmp <- tempfile(fileext = ".yml")
cfg <- dcf_spec_template()
cfg$entry_yield <- 0.06
as_yaml(cfg, tmp)
stopifnot(file.exists(tmp))

cfg <- dcf_spec_template()
cfg$entry_yield <- 0.06

tmp <- tempfile(fileext = ".yml")
as_yaml(cfg, tmp)
stopifnot(file.exists(tmp))
unlink(tmp)

build_lease_table Stylised rent table (lease cash-flow)

Description

Builds a minimal year-noi table for n_years with optionally vectorised vacancy rates.

Usage

build_lease_table(rent_signed, surface_m2, n_years, vac_rate_vec = 0)

Arguments
rent_signed numeric. Face rent (€/m?/year) (scalar or vector).
surface_m2 numeric. Floor area (m?2) (scalar or vector).
n_years integer(1). Number of years.

vac_rate_vec numeric. Vacancy (scalar or vector), recycled to n_years.

cfg_explain 7

Value

tibble(year, noi).

Examples

build_lease_table(400, 2500, n_years = 5, vac_rate_vec = c(0, .05, .1))

cfg_explain Explain effective parameters after normalization

Description
Produces a compact tibble that reports selected effective inputs used by the engine after validation
and normalization (see cfg_normalize()).

Usage
cfg_explain(config)

Arguments

config List configuration (not a file path).

Value

A tibble with selected effective parameters and derived values.

Examples

cfg <- dcf_spec_template()
cfg$acq_price_ht <- 1eb

ex <- cfg_explain(cfg)
str(ex)

cfg_missing Report missing or inconsistent fields in a config list

Description
Runs lightweight checks aligned with cfg_validate() and returns a table of issues, if any. This is
a convenience wrapper for user-facing diagnostics; it does not replace cfg_validate().

Usage

cfg_missing(config)

8 ctfg_normalize

Arguments

config List configuration to inspect.

Value

A tibble with columns field, problem, hint, or an empty tibble if no issues are detected.

Examples

tib <- cfg_missing(list())

tib
cfg_normalize Normalize YAML into canonical Discounted Cash Flow (DCF)/debt
parameters
Description

Converts araw YAML configuration into a set of scalars and vectors directly usable by dcf_calculate()
and debt_built_schedule().

Usage

cfg_normalize(cfg)

Arguments

cfg list parsed from YAML (raw, not yet normalized).

Value

list including in particular:

e disc_rate, exit_yield, exit_cost,

* acq_price_ht, acq_price_di,

e 1tv_init, rate_annual, maturity, type,

e arrangement_fee_pct, capitalized_fees,

* noi_vec, opex_vec, capex_vec (vectors of length N).

cfg_validate 9

cfg_validate Validate YAML configuration structure

Description

Validate YAML configuration structure

Usage
cfg_validate(cfg)

Arguments

cfg list returned by dcf_read_config().

Value

cfg invisibly (or error if invalid).

cf_compute_levered Equity cash flows and metrics in the presence of debt

Description

Computes equity cash flows over ¢ = 0..N from an unlevered Discounted Cash Flow (DCF)
and an annual debt schedule, then derives equity IRR and equity NPV. The convention is that
free_cash_flow includes the acquisition at £ = 0 as a negative flow and includes operating free
cash flows for ¢ >= 1. Sale proceeds are booked at ¢t = N via sale_proceeds.

Usage

cf_compute_levered(dcf_res, debt_sched, cfg)

Arguments

dcf_res list. Result of dcf_calculate(). Must contain:

e inputs with at least acq_price, disc_rate, exit_yield,
¢ cashflows with at least year, free_cash_flow, sale_proceeds, net_operating_income.
debt_sched data.frame or tibble. Debt schedule (output of debt_built_schedule()). Min-

imal columns: year, payment, interest, amortization, outstanding_debt.
Years must be compatible with dcf_res$cashflows$year.

cfg list. Financing parameters. Must contain 1tv_init. Optional: arrangement_fee_pct
(default 0) and capitalized_fees (default TRUE).

10 cf _make_tull table

Value
A list with:

* equity_cf: numeric vector of equity cash flows,
e metrics: list with irr_equity, npv_equity, equity_0, loan_draw_o,

e full: dcf_res$cashflows enriched by add_credit_ratios().

Examples

dcf <- dcf_calculate(
acq_price = 1e7, entry_yield = 0.05, exit_yield = 0.055,
horizon_years = 10, disc_rate = 0.07
)
sch <- debt_built_schedule(
principal = 6e6, rate_annual = 0.045, maturity = 5, type = "bullet”
)
out <- cf_compute_levered(
dcf_res = dcf,
debt_sched = sch,
cfg = list(ltv_init = 0.6, arrangement_fee_pct = @, capitalized_fees = TRUE)
)
stopifnot(is.numeric(out$metrics$irr_equity) || is.na(out$metrics$irr_equity))
stopifnot(is.numeric(out$equity_cf))

cf_make_full_table Assemble the full cash-flow table (discounted cash flow and debt)

Description

Builds an annual table by merging operating cash flows from a discounted cash flow model with a
debt schedule; standardises gross effective income (GEI) and net operating income (NOI), computes
post-debt cash flows, the equity cash flow, and discounted equity cash flows. Enforces a minimal
contract on expected columns on both inputs.

Usage
cf_make_full_table(dcf, schedule)

Arguments

dcf A list containing at least an element cashflows (data.frame or tibble) with
one row per year and the following columns:
* year (integer, 0 = acquisition date),
¢ net_operating_income (numeric),
* capex (numeric, optional),
* free_cash_flow (numeric, pre-debt cash flow),
* sale_proceeds (numeric, sale proceeds in the exit year, 0 otherwise),

cf_make_full table

11

discount_factor (numeric, strictly positive discount factor).

If gei or noi are missing, they are derived according to the convention: gei :=
net_operating_income and noi := gei - opex. If opex is missing, it is set to

0.

schedule A data.frame or tibble of the debt schedule with one row per year and the re-
quired columns:

Details

Invariants and checks:

year (integer, aligned with dcf$cashflows$year),

debt_draw (numeric, drawdown; typically positive at year ==),
interest (numeric),

amortization (numeric),

payment (numeric, debt service = interest + amortization; must be 0 at year

arrangement_fee (numeric, upfront or recurring fees),
outstanding_debt (numeric, end-of-period outstanding balance).

* Stop if required columns are missing on the Discounted Cash Flow (DCF) or the debt side.

» Stop if payment[year == 0] !=0.
e Warn if debt_draw[year == 0] <= 0.

Value

A merged tibble (join on year) containing:

* all input columns from the Discounted Cash Flow (DCF) and the debt schedule,

e df (alias of discount_factor),

e cf_pre_debt (= free_cash_flow),

e cf_post_debt (=

free_cash_flow - payment - arrangement_fee + debt_draw),

* equity_flow (= cf_post_debt + sale_proceeds),

e equity_disc (=equity_flow / df).

Examples

cf <- tibble::tibble(

year = 0:2,

net_operating_income = c(NA, 120, 124),
opex = c(0, 20, 21),

capex = c(0, 5, 5),

free_cash_flow = c(-100, 95, 98),
sale_proceeds = c(0, 0, 150),
discount_factor = c(1, 1.05, 1.1025)

)

dcf <- list(cashflows

= cf)

12 compare_financing_scenarios

schedule <- tibble::tibble(
year = 0:2,
debt_draw = c(60, 0, 0),
interest = c(0, 3, 2),
amortization = c(@, 10, 50),
payment = interest + amortization,
arrangement_fee = c(0.6, 0, 0),
outstanding_debt = c(60, 50, 0)

)

res <- cf_make_full_table(dcf, schedule)
res

compare_financing_scenarios

Compare three financing structures on a common Discounted Cash
Flow (DCF) base

Description
Build and compare three financing setups for a given unlevered DCF:
* an all-equity case,
¢ a bullet debt structure,

* an amortizing debt structure.

All three scenarios share the same acquisition base, interest rate, maturity and target LTV. The
function returns a summary table of key investment and credit metrics, together with detailed objects
for each scenario.

Usage
compare_financing_scenarios(
dcf_res,
acq_price,
1tv,
rate,
maturity,
covenants = list(dscr_min = 1.25, ltv_max = 0.65)
)
Arguments
dcf_res List; result of dcf_calculate() for the unlevered project. It is assumed to con-
tain the cash-flow table and the input exit yield in dcf_res$inputs$exit_yield.
acq_price Numeric scalar; acquisition base consistent with the pricing convention used in

dcf_res (for example HT, DI or value).

compute_equity_invest 13

1ty Numeric scalar in [@, 1); target loan-to-value ratio at origination.

rate Numeric scalar in [0, 1]; annual interest rate used to build the debt schedules.
maturity Integer scalar greater than or equal to 1; debt maturity in years.

covenants Optional list of covenant thresholds, for example 1ist(dscr_min =1.25, 1tv_max

=0.65). These values are passed to add_credit_ratios() when computing
credit ratios.

Value
A list with two components:

summary A tibble that summarizes, for the all-equity, bullet and amortizing cases, the
main valuation metrics (IRR, NPV) and selected credit indicators (for example
minimum DSCR and maximum forward LTV).

details A named list with one element per scenario. Each element contains the debt
schedule (schedule), the full joined project and debt cash-flow table (full),
the credit-ratio table (ratios), and the leveraged metrics object (metrics).

compute_equity_invest Compute equity invested at t0 (acquisition costs already included in
acq_price)

Description

Compute equity invested at tO (acquisition costs already included in acq_price)

Usage

compute_equity_invest(
acg_price,
ltv_init,
arrangement_fee_pct = 0,
capitalized_fees = TRUE

)

Arguments
acq_price All-in acquisition price (basis for financing).
ltv_init Initial LTV (0-1).

arrangement_fee_pct
Arrangement fee rate (0—1).
capitalized_fees
TRUE if fees are capitalized into the loan principal.

Value

A list with: equity_0, loan_draw_0, fees_init, fees_cap.

14 compute_noi_yl

compute_leveraged_metrics
Levered summary (equity cash flows and equity metrics)

Description
Builds equity cash flows from a Discounted Cash Flow (DCF) table and a standardised debt sched-
ule.

Usage

compute_leveraged_metrics(dcf_res, debt_sched, equity_invest)

Arguments
dcf_res list. Output of dcf_calculate().
debt_sched data.frame. Output of debt_built_schedule() (0...N).

equity_invest numeric(1). Equity contribution at t = @ (positive).

Value

list containing irr_equity, npv_equity, cashflows (levered table), and a reminder of the project-
level metrics.

compute_noi_y1 Quick computation of year-1 NOI

Description

Quick computation of year-1 NOI

Usage

compute_noi_yl(rent_signed, lettable_area, vac_rate = 0)

Arguments

rent_signed numeric(1). Face rent (€/m?/year).
lettable_area numeric(1). Lettable area (m?).

vac_rate numeric(1) in [@,1). Average vacancy rate.

Value

numeric(1) NOI,; rounded to cents.

compute_unleveraged_metrics 15

Examples

compute_noi_y1(400, 2500, vac_rate = 0.05)

compute_unleveraged_metrics
Unlevered summary (project metrics)

Description

Derives project-level metrics from the standard DCF table.

Usage

compute_unleveraged_metrics(dcf_res)

Arguments

dcf_res list. Output of dcf_calculate().

Value

list containing irr_project, npv_project, irr_equity, npv_equity, and cashflows.

cre_glossary Glossary of CRE finance and modelling terms

Description

Bilingual glossary (English/French) of the main commercial real estate finance and discounted cash-
flow modelling terms used in the package. Definitions are intended to be short, operational and
consistent with the usage in vignettes and function documentation.

Usage

cre_glossary

Format
A tibble with one row per term and the following columns:

term_id Short, unique identifier used internally (e.g. "irr", "dscr").
term_en Canonical English label.

term_fr Canonical French label.

definition_en Operational English definition (2—4 lines).

definition_fr Operational French definition (2—4 lines).

16 dcf _add_noi_columns

category High-level category (e.g. "discounted_cash_flow", "debt_metrics", "portfolio", "leas-
ing").
subcategory Optional subcategory (e.g. "return", "risk", "covenant").

see_also Comma-separated list of related term_id values.

See Also

Vignette vignette("glossary”, package = "cre.dcf")

dcf_add_noi_columns Explicitly standardise GEI and NOI columns in a Discounted Cash
Flow (DCF) cash-flow table

Description

Guarantees the presence of numeric columns gei and noi in a cash-flow table, to make explicit
the income base used for the unlevered project IRR. In this package, gei denotes gross effective
income (after vacancy and rent-free effects) and noi is computed as gei - opex.

The input may provide gei directly, or a legacy column net_operating_income which is inter-
preted here as gei (compatibility with earlier pipelines).

Usage

dcf_add_noi_columns(cf_tab)

Arguments
cf_tab data.frameltibble Cash-flow table for periods 0..N, typically produced by dcf_calculate().
Required columns: opex and either gei or net_operating_income.
Value

A tibble with guaranteed numeric columns gei and noi. Existing noi is preserved when present,
but a warning is emitted if it differs from gei - opex beyond a small tolerance.

Examples

Minimal example with a legacy column name (net_operating_income interpreted as GEI)
cf_tab <- tibble::tibble(
year = 0:2,
net_operating_income = c(@, 120, 124),
opex = c(@, 20, 21)
)
dcf_add_noi_columns(cf_tab)

Example where GEI is provided explicitly and NOI is already present
cf_tab2 <- tibble::tibble(
year = 0:2,

dcf _calculate

gei
opex
noi =

)

17

c(0, 120, 124),
c(o, 20, 21),
c(0, 100, 103)

dcf_add_noi_columns(cf_tab2)

dcf_calculate

Unlevered discounted cash flow model for a commercial real estate
asset

Description

Builds an indexed annual pro forma over years 0..N, a terminal value, and unlevered valuation
metrics including net present value (NPV) and internal rate of return (IRR) for a directly held
commercial real estate (CRE) asset, without debt. The income base is net operating income (NOI).

Usage

dcf_calculate(

acg_price,
entry_yield,
exit_yield,

horizon_years,

disc_rate,

exit_cost = 0,

capex = 0,

index_rent = 0,

vacancy = 0,

opex = 0,
noi = NULL
)
Arguments
acqg_price

entry_yield

exit_yield
horizon_years
disc_rate
exit_cost

capex

index_rent

Numeric scalar. Acquisition price (net of tax or all-in, depending on the chosen
convention).

Numeric scalarin [@, 1]. Entry yield; in top-down mode, NOI[1] = entry_yield
* acq_price.

Numeric scalar in (@, 1]. Exit yield.

Integer scalar greater than or equal to 1. Projection horizon N in years.
Numeric scalar in (@, 1]. Discount rate.

Numeric scalar in [0, 1). Exit cost as a fraction of the sale price. Default is 0.

Numeric scalar or numeric vector of length N. Capital expenditure per year. De-
fault is 0.

Numeric scalar or numeric vector of length N. Annual rent indexation rate. Used
only in top-down mode. Default is 0.

18 dcf calculate

vacancy Numeric scalar or numeric vector of length N in [0, 1). Average annual va-
cancy. Used only in top-down mode. Default is 0.

opex Numeric scalar or numeric vector of length N. Operating expenses (non-recoverable).
Default is 0.

noi Numeric scalar or numeric vector of length N, optional. Exogenous NOI path

(for example computed from leases). When non-NULL, it replaces the internal
NOI calculation.

Details

Time convention: year = @. .N. The acquisition is booked at year = @ in free_cash_flow as a neg-
ative cash flow equal to the acquisition price, and the sale is booked only at year = Nin sale_proceeds.
The project NPV corresponds to the sum of discounted_cash_flow.

Two construction modes are available for the NOI path:

* Top-down mode (default): when noi is NULL, the NOI path is derived from the entry yield
and acquisition price: NOI[1] = entry_yield x acq_price, then indexed with index_rent
and adjusted by vacancy.

* Bottom-up mode: when noi is supplied (scalar or vector), it is recycled to length N and used
as the NOI[1..N] path. In this case, entry_yield, index_rent, and vacancy are not used to
recompute NOI.

Value

A list with:

* inputs: list of main assumptions,
e cashflows: tibble 0..N with standardised columns,
* npv: project net present value (NPV),

* irr_project: project internal rate of return (IRR), unlevered.

Examples

res <- dcf_calculate(
acqg_price = 1000,
entry_yield = 0.06,
exit_yield = 0.055,
horizon_years = 3,
disc_rate = 0.08,
capex = c(5, 5, 0),
index_rent = c(0.01, 0.01, 0.01),
vacancy = c(0.05, 0.05, 0),
opex = c(10, 10, 10)

)

res$npv

res$irr_project

head(res$cashflows)

dcf_read_config 19

dcf_read_config Read a configuration YAML

Description

Read a configuration YAML

Usage

dcf_read_config(
config_file = system.file("extdata"”, "preset_default.yml”, package = "cre.dcf")

)

Arguments

config_file path; default to inst/extdata/config.yml in the package.

Value
list
dcf_spec_template Minimal specification template for a Discounted Cash Flow (DCF)
case
Description

Returns a ready-to-edit list that matches the package’s YAML grammar. Use this for interactive
prototyping or to generate a YAML file.
Usage

dcf_spec_template()

Value

A named list with all required top-level keys and sane defaults.

Examples

cfg <- dcf_spec_template()
str(cfg, max.level = 1)

20 debt_built _schedule

dcf_write_yaml_template
Write a commented YAML template for users to edit

Description

Creates a 'YAML' file on disk from dcf_spec_template(), suitable for manual editing.

Usage
dcf_write_yaml_template(path)

Arguments

path File path where to write the 'YAML' file (for example "my_case.yml").

Value

The input path, invisibly.

Examples

tmp <- tempfile(fileext = ".yml")
dcf_write_yaml_template(tmp)
stopifnot(file.exists(tmp))
unlink(tmp)

debt_built_schedule Debt schedule for bullet and amortising loans

Description

Creates an annual schedule indexed from @. .maturity with an initial draw at year = @, interest,
amortisation, total payment, and end-of-year outstanding balance. The convention is no payment at
year = @. For both loan types, the outstanding principal is 0 at maturity up to rounding.

Usage

debt_built_schedule(
principal,
rate_annual,
maturity,
type = c("amort”, "bullet"),
extra_amort_pct = 0,
arrangement_fee_pct = @

derive_exit_yield 21

Arguments
principal Numeric scalar. Amount borrowed at year = @ (greater than or equal to 0).
rate_annual Numeric scalar in [0, 1]. Annual nominal interest rate.
maturity Integer scalar greater than or equal to 1. Duration in years; returned years are
0..maturity.
type Character scalar. Either "amort"” (constant payment) or "bullet”.

extra_amort_pct
Numeric scalar in [0, 1]. Additional annual amortisation rate (used only for
"bullet").

arrangement_fee_pct
Numeric scalar in [0, 1]. Arrangement fee rate applied to principal.

Value

A tibble with columns year, debt_draw, interest, amortization, payment, arrangement_fee,
outstanding_debt, and loan_init.

Examples

sch_b <- debt_built_schedule(6e6, 0.045, maturity = 5, type "bullet")
sch_a <- debt_built_schedule(6e6, ©0.045, maturity = 5, type = "amort")
sch_b
sch_a

derive_exit_yield Derive an exit yield from an entry yield and a spread (bps)

Description

Derive an exit yield from an entry yield and a spread (bps)

Usage

derive_exit_yield(entry_yield, spread_bps)

Arguments
entry_yield numeric(1) >= 0. Entry cap-rate in decimal form.
spread_bps numeric(1). Spread in basis points (may be negative).
Value

numeric(1) Exit yield in decimal form.

Examples

derive_exit_yield(0.055, 50) # 0.060

22 forward_value_from_noi

flag_covenants Covenant flags after computing credit ratios

Description
Adds logical indicator columns for covenant breaches based on three ratios: debt service coverage
ratio (DSCR), forward loan-to-value ratio (LTV), and current debt yield.

Usage

flag_covenants(cf, cov)

Arguments
cf A data.frame or tibble containing at least dscr, 1tv_forward, and debt_yield_current.
cov A list of covenant thresholds. Supported elements include:
e dscr_min numeric, default 1.25,
¢ 1tv_max numeric in [@, 1], default 0.65,
e debt_yield_min numeric, default 0.08.
Value

The input table cf enriched with logical columns cov_dscr_breach, cov_1tv_breach, and cov_dy_breach.

Examples

cf <- tibble::tibble(
year = 1:3,
dscr = c(1.40, 1.10, NA),
1tv_forward = c(0.60, 0.70, 0.64),
debt_yield_current = c(0.09, 0.07, 0.08)
)
cov <- list(dscr_min = 1.25, ltv_max = 0.65, debt_yield_min = 0.08)
flag_covenants(cf, cov)

forward_value_from_noi
Forward value from next-period NOI

Description

Compute a forward-value vector based on next-period NOI and an exit yield. Given a series of
annual NOI values, the function constructs a vector NOI can be obtained either from a fixed forward
growth rate or from a simple extrapolation of observed growth.

get_cfg 23

Usage

forward_value_from_noi(noi_vec, exit_yield, g_forward = NA_real_)

Arguments
noi_vec Numeric vector of annual NOI values.
exit_yield Numeric scalar; exit yield in decimal form (for example 0.05).
g_forward Optional numeric scalar giving a constant forward growth rate. When supplied,
the last element of NOI_next is constructed as the last NOI multiplied by 1 +
g_forward. When g_forward is NA (the default), a capped log-growth extrapo-
lation is used instead.
Value

A numeric vector of forward values with the same length as noi_vec.

get_cfg Safe access to nested YAML values

Description

Safe access to nested YAML values

Usage
get_cfg(cfg, ..., default = NULL)
Arguments
cfg list configuration object.
nested keys.
default value if missing.
Value

value or default.

24 init_debt_fees

guard_rate Guardrail on an input rate (message if scale likely incorrect)

Description

Guardrail on an input rate (message if scale likely incorrect)

Usage

guard_rate(x, name)

Arguments

X numeric(1).

name character(1). Parameter name used in messages.
Value

numeric(1) unchanged.

init_debt_fees Initial debt fees (arrangement fee)

Description

Initial debt fees (arrangement fee)

Usage

init_debt_fees(loan_draw_0, arrangement_fee_pct = @, capitalized = TRUE)

Arguments

loan_draw_o Initial loan drawdown amount (before any possible capitalization of fees).

arrangement_fee_pct
Arrangement fee rate (0—1).

capitalized Logical: TRUE = fee is capitalized into the loan principal, FALSE = fee is paid
in cash.

Value

A list: amount (numeric), capitalized (logical).

irr_partition 25

irr_partition IRR decomposition between operations and resale

Description

Approximates the relative contribution of:

* operational cash flows (acquisition + NOI - capex - opex),

* resale (net sale in year N), to the total IRR, using NPV shares (share) and mapping them to
irr_total (irr_contrib = irr_total x share).

Usage

irr_partition(cashflows, tv_disc = NULL, irr_total, initial_investment = NULL)

Arguments
cashflows data.frame. Must contain at least year, free_cash_flow, discount_factor.
If sale_proceeds is missing, it is assumed to be zero.
tv_disc numeric(1). Terminal value already discounted (net sale), if available. If NULL,
it is derived from sale_proceeds and discount_factor.
irr_total numeric(1). Total IRR (project or equity) for which the decomposition is sought

(e.g. dcf_res$irr_project or an equity IRR).
initial_investment
numeric(1). Not used here (kept for API compatibility).

Value

tibble(component, share, irr_contrib) with two rows: "Operations" and "Resale".

irr_safe Robust internal rate of return (adaptive bracketing)
Description
Computes a real IRR from a vector of dated cash flows ¢ = 0,...,T. The algorithm first searches

for a root in an initial interval [lower, upper]. If this interval does not bracket a root (that is, if
the net present value function does not change sign), the upper bound is expanded multiplicatively
up to max_upper.

If the cash-flow series exhibits no sign change (all flows are >= @ or all <= @), or if no root can be
bracketed after expansion, the function silently returns NA_real_ (optionally with a warning if warn
= TRUE).

26 leases_tbl_structuration

Usage

irr_safe(
cf,
lower = -0.9999,
upper = 0.1,
max_upper = 10000,
tol = sqrt(.Machine$double.eps),

warn = FALSE
)
Arguments
cf Numeric. Vector of cash flows ¢t =0,...,7.
lower, upper Initial search bounds for the IRR (decimal rates).
max_upper Maximum upper bound when automatically expanding the bracketing interval.
tol Numerical tolerance passed to uniroot.
warn Logical. If TRUE, emits a warning when the IRR cannot be computed (no sign
change or failure of bracketing).
Value

A numeric scalar (decimal rate) corresponding to the IRR, or NA_real_ if the IRR is not defined or
could not be located numerically.

Examples

irr_safe(c(-100, 60, 60)) # IRR defined
irr_safe(c(-100, -20, -5)) # no sign change -> NA

leases_tbl_structuration
Aggregate lease events into annual vectors aligned on
base_year..base_year+horizon-1

Description

Converts a list of lease events into annual vectors for rent, vacancy, free months, tenant capex
(€/sqm), and a new_lease flag. The [start, end] convention is used: an event applies to years
y with start <= y <= end. Overlaps within a unit resolve as: rent/vac/new_lease: last event wins;
capex_sqm/free_months: accumulated at start year. Returned vectors are non-indexed (indexation
is applied later in cfg_normalize()).

Usage

leases_tbl_structuration(ev, horizon, base_year)

npv_rate 27

Arguments
ev list of events with fields: start, end, rent, vac, free_months, capex_sqm, new_lease.
horizon integer(1) >= 1, number of annual steps.
base_year integer(1), first absolute year of the horizon.

Value

list with numeric vectors of length horizon: rent, vac, free, capex_sgm, new_lease.

npv_rate Netpresent value at constant rate

Description

NPV of cf evaluated at times (default 0..T).

Usage

npv_rate(cf, rate, times = seq_along(cf) - 1L)

Arguments

cf numeric. Cash flows.

rate numeric(1). Discount rate (decimal).

times integer. Time indices (same length as cf).
Value

numeric(1) NPV.

price_from_cap Acquisition price from an entry capitalization rate

Description

Converts a given NOI_y1 and entry_yield into a net purchase price (HT) and an all-in price in-
cluding acquisition costs (via acq_cost_rate).

Usage

price_from_cap(noi_y1, entry_yield, acg_cost_rate = 0)

28

Arguments

noi_y1

entry_yield

acq_cost_rate

Value

run_case

numeric(1). Expected NOI for year 1.
numeric(1) in (@, 1]. Entry capitalization rate.

numeric(1) in [@,1). Acquisition cost rate.

list(ht = net price, di = all-in price).

Examples

price_from_cap(500000, 0.05, acq_cost_rate = 0.07)

run_case

Run a full DCF case from a list or a YAML file

Description

User-facing single entry point. Accepts either an in-memory config list or a config_file path
to YAML. Both routes share the same validation and normalization pathway, ensuring identical
downstream behavior.

Usage

run_case(

config = NULL,

config_file = NULL,
debt_type = c("bullet”, "amort"),

1tv_base = c("price_di"”, "price_ht", "value")
)
Arguments
config Optional list configuration following the YAML grammar.

config_file

Optional path to a YAML configuration file. If both config and config_file
are NULL, defaults to the package example at inst/extdata/config.yml.

non

debt_type Debt schedule type to use ("bullet” or "amort™). This parameter overrides
any implicit type inferred in normalization.
1tv_base Base for loan-to-value (LTV) and initial principal. One of "price_di", "price_ht"

or "value”.

run_from_config

Details

The function centralizes user ergonomics:

e Reads either a list or a YAML file.

29

¢ Validates and normalizes with cfg_validate() and cfg_normalize().

* Computes the unlevered discounted cash flow (DCF), builds a debt schedule, computes lever-
aged metrics, and adds credit ratios to the full cash-flow table.

* Handles capitalized arrangement fees by adjusting the scheduled principal to avoid double-

counting.

Value

A list containing pricing (acquisition price net of taxes, acquisition costs, and acquisition price
including costs), all-equity metrics, leveraged metrics, a comparison table, the full cash-flow table

with credit ratios, and selected configuration flags.

Examples

R list route
cfg <- dcf_spec_template()
cfg$leases <- list(
list(
unit = "U",
area = 1000,
events = list(
list(
start = cfg$purchase_year,
end = cfg$purchase_year + cfg$horizon_years,
rent = 200,
free_months = 0,
capex_sgm = 0,

keep NOI positive in terminal year

vac = 0,
new_lease = @
)
)
)
)
out <- run_case(config = cfg, debt_type = "bullet”)
names(out)
run_from_config Canonical pipeline from a YAML file
Description

Canonical pipeline from a YAML file

30 select_terminal_noi

Usage

run_from_config(config_file, ltv_base = c("price_ht", "price_di", "value"))

Arguments

config_file path to YAML.

1tv_base "price_ht" | "price_di" | "value".

Value

list(dcf, debt, full, ratios, norm)

select_terminal_noi Robust selection of terminal NOI for resale valuation

Description

Chooses a stabilised net operating income (NOI) for terminal value calculation, using a hierarchical
decision rule designed to mitigate distortions driven by vacancy, capital expenditure, or atypical
end-of-horizon cash-flow patterns.

The selection logic proceeds as follows:
1. IfNOI_Nis (numerically) zero and force_theoretical_if_noi_n_zerois TRUE, use noi_theoretical
when provided.
If year N is clean (zero vacancy, zero capex, and NOI_N > @), use NOI_N.
If year N is distorted but year N-1 is clean and NOI_{N-13} > @, use NOI_{N-13}.

Otherwise, if noi_theoretical is provided, use it.

wook »en

As a last resort, fall back to NOI_N. A warning is emitted only when NOI_N <= 0.

Usage

select_terminal_noi(
noi,
vacancy = NULL,
capex = NULL,
noi_theoretical = NULL,
force_theoretical_if_noi_n_zero = TRUE

simulate_shock 31

Arguments
noi Numeric vector of length N containing annual NOI values for years 1..N.
vacancy Optional numeric vector of length N giving annual vacancy rates. When NULL,
vacancy is assumed to be zero in all years.
capex Optional numeric vector of length N giving annual capital expenditures. When

NULL, capex is assumed to be zero in all years.
noi_theoretical

Optional numeric scalar giving a stabilised theoretical NOI (for example market
rent multiplied by area).
force_theoretical_if_noi_n_zero

Logical scalar. When TRUE, and NOI_N is numerically zero, noi_theoretical
is used when available.

Value

Numeric scalar giving the NOI retained for capitalization.

simulate_shock Apply scenario shocks to a set of Discounted Cash Flow (DCF) as-
sumptions

Description

Applies additive shifts (rates and yields in decimal form) or proportional scalings (NOI, CAPEX)
to a list of parameters. Preserves field names.

Usage

simulate_shock(cfg, deltas = list())

Arguments

cfg list. Base assumptions (e.g. those passed to dcf_calculate()). Fields read if
present: disc_rate, exit_yield, entry_yield, capex, index_rent, vacancy.
deltas list. Supported keywords:
e d_rate (additive on disc_rate, decimal),
e d_exit_yield (additive on exit_yield, decimal),

* d_noi (multiplicative on entry_yield, i.e. on year-1 net operating income
NOI_y1),

* d_capex (multiplicative on capex),
e d_index (multiplicative on index_rent),
* d_vacancy (multiplicative on vacancy).

Value

list cfg_choc with the same structure as cfg.

32 styles_breach_counts

styles_breach_counts Count covenant breaches by style under the bullet-debt scenario

Description

This helper aggregates, for a set of styles, the number of periods in which bullet-debt credit metrics
breach simple covenant guardrails:

* DSCR <min_dscr_guard,

e forward LTV > max_1tv_guard.

Usage

styles_breach_counts(
styles = c("core”, "core_plus”, "value_added”, "opportunistic"”),
min_dscr_guard = 1.2,
max_ltv_guard = 0.65

)

Arguments

n o on n on

styles Character vector of style names (e.g. "core"”, "core_plus”, "value_added",
"opportunistic”). The output style factor will follow this ordering.

min_dscr_guard Numeric scalar, DSCR guardrail below which a period is counted as a DSCR
breach.

max_ltv_guard Numeric scalar, forward-LTV guardrail above which a period is counted as an
LTV breach.

Details

It relies on style_bullet_ratios(), which is expected to return, for each style, a tibble of yearly
ratios in the bullet-debt scenario with at least the columns: style, year, dscr, 1tv_forward.

Value

A tibble with one row per style and the columns:

e style (factor, levels = styles),
* n_dscr_breach: number of years with dscr <min_dscr_guard,

* n_ltv_breach: number of years with 1tv_forward > max_ltv_guard. Year O is excluded
from the counts.

styles_break_even_exit_yield 33

styles_break_even_exit_yield
Break-even exit yield for a target leveraged equity IRR, by style

Description

For each style, this helper solves (via uniroot()) for the exit yield that delivers a specified target
leveraged equity IRR, holding all other assumptions of the preset constant.

Usage

styles_break_even_exit_yield(
styles,
target_irr,
interval = c(0.03, 0.1),
config_dir = system.file("extdata”, package = "cre.dcf")

)
Arguments
styles Character vector of style identifiers.
target_irr Numeric, target leveraged equity IRR to hit (in decimal).
interval Numeric vector of length 2 giving the bracketing interval for the absolute exit
yield (e.g. c(0.03, 0.10) for 3%—10%).
config_dir Directory where preset YAML files are stored.
Details
It proceeds by:

* reading the YAML preset,

¢ defining a root-finding function that, for a candidate absolute exit yield, adjusts exit_yield_spread_bps
accordingly,

* calling run_case() and returning the difference between the resulting equity IRR and target_irr,
* bracketing the root over a user-specified interval.

The lower the break-even exit yield, the tighter the exit_pricing assumption that must be met to
reach the hurdle, and the more the style depends on favourable market_conditions at sale.

Value
A tibble with columns:

¢ style (character),
e target_irr (numeric),

* be_exit_yield (numeric, break-even exit yield in decimal, or NA if no root was found in
interval).

34

styles_distressed_exit

styles_distressed_exit

Distressed exit diagnostic across CRE investment styles

Description

This helper applies

a simple lender-driven distressed-exit rule to a set of canonical style presets. For

each style and covenant regime, it:

1. Runs the baseline case via run_case().
2. Identifies the first covenant breach under the bullet-debt scenario (DSCR and forward LTV).

3. Optionally shifts very early breaches to a minimum refinancing year (refinancing window

logic).

4. Re-runs the case with a shortened horizon and a fire-sale exit-yield penalty, and extracts:
* distressed equity IRR (possibly NA),
* distressed equity multiple and loss percentage,
* distressed sale value.

Usage

styles_distressed_exit(

styles,
regimes,
fire_sale_bps
refi_min_year

100,
= 3L,

allow_yearl1_distress = TRUE,
ext_dir = system.file("extdata”, package = "cre.dcf")

Arguments

styles

regimes

fire_sale_bps

refi_min_year

Character vector of style tags, e.g. c("core"”, "core_plus”, "value_added",
"opportunistic"”).

A data frame or tibble with at least three columns: regime (label), min_dscr
(numeric), max_1tv (numeric). Each row defines a covenant regime (strict /
baseline / flexible, etc.).

Numeric scalar. Widening (in basis points) applied to the exit-yield spread in
the distressed run (e.g. +100@ for +100 bps).

Integer scalar. Minimum year at which a lender-driven distressed exit can occur.
If a breach is detected before this year and allow_year1_distress = FALSE,
the distressed exit is moved to refi_min_year.

allow_year1_distress

ext_dir

Logical. If TRUE, distress can occur in year 1. If FALSE, breaches in years
< refi_min_year are shifted to refi_min_year (refinancing window logic).
Optional directory where style presets (YAML) are stored. Defaults to the pack-
age inst/extdata folder.

styles_equity_cashflows 35

Value
A tibble with one row per combination of style and regime, and the columns:

e style, regime, min_dscr, max_ltv,

* breach_year, breach_type,

e irr_equity_base, irr_equity_distress,

* distress_undefined (logical),

* equity_multiple_base, equity_multiple_distress,
* equity_loss_pct_base, equity_loss_pct_distress,

e sale_value_distress.

styles_equity_cashflows
Extract leveraged equity cash flows by style

Description

This helper loads a set of preset styles from YAML, runs each configuration through [run_case()]
under the leveraged (debt) scenario, and extracts the yearly equity cash flows. It is primarily used
in vignettes and tests to document the time profile of equity outflows and inflows by style.

Usage
styles_equity_cashflows(
styles,
config_dir = system.file("extdata”, package = "cre.dcf")
)
Arguments
styles Character vector of style identifiers, e.g. c("core”, "core_plus”, "value_added”,
"opportunistic”).
config_dir Directory from which preset YAML files are loaded. Defaults to the package
inst/extdata folder.
Details

For each style, the function:

1. reads preset_<style>.yml from config_dir;
2. calls [run_case()] and accesses out$leveraged$cashflows;
3. returns the pair (year, equity_cf) with a style label.

The sign convention follows [compute_leveraged_metrics()]: the initial equity outlay at £ = 0
is negative, subsequent net equity distributions are positive when cash is returned to equity.

36 styles_exit_sensitivity

Value
A tibble with columns:
* style (character),

* year (integer),

* equity_cf (numeric), the leveraged equity cash flow in year year.

styles_exit_sensitivity
Exit-yield sensitivity of leveraged equity IRR by style

Description

For each style, this helper:

* loads the corresponding YAML preset,
e perturbs the exit_yield_spread_bps parameter by a grid of deltas,
e reruns run_case() for each perturbation,

* collects the leveraged equity IRR.

Usage

styles_exit_sensitivity(
styles,
delta_bps = c(-50, 0, 50),
config_dir = system.file("extdata"”, package = "cre.dcf")

)
Arguments
styles Character vector of style identifiers (e.g. "core”, "core_plus”, "value_added",
"opportunistic”).
delta_bps Numeric vector of exit-yield spread shocks in basis points, applied additively to
the exit_yield_spread_bps field of each preset.
config_dir Directory where preset YAML files are stored. Defaults to the package’s inst/extdata
folder.
Details

Economically, this approximates how sensitive each style’s equity IRR is to small shifts in the
exit_yield, and therefore to terminal_value risk. Strategies that concentrate value creation at exit
(e.g. value_added, opportunistic) should display stronger IRR reactions to a given shock.

styles_growth_sensitivity 37

Value
A tibble with columns:

e style (character),
* shock_bps (numeric, the applied spread shock),

* irr_equity (numeric, leveraged equity IRR under the shock).

styles_growth_sensitivity
Rental-growth (indexation) sensitivity of leveraged equity IRR by style

Description

This helper perturbs the global index_rate parameter of each style preset by a given grid of additive
shocks and recomputes the leveraged equity IRR.

Usage

styles_growth_sensitivity(
styles,
delta = c(-0.01, @, 0.01),
config_dir = system.file("extdata"”, package = "cre.dcf")

)
Arguments
styles Character vector of style identifiers.
delta Numeric vector of rental-growth shocks (additive) applied to the index_rate
parameter of the preset.
config_dir Directory where preset YAML files are stored.
Details

It therefore measures how dependent each style is on rental_growth (via indexation and lease re-
newals) to reach its target equity_IRR. In canonical calibrations, core strategies tend to be less
sensitive than value_added or opportunistic profiles, which rely more heavily on growth and lease-
up.

Value

A tibble with columns:

¢ style (character),
* shock_growth (numeric, growth shock added to index_rate),

* irr_equity (numeric, leveraged equity IRR under the shock).

38 styles_manifest

styles_manifest Compute the style-by-style manifest for canonical presets

Description

n on non

This helper runs the four canonical style presets ("core”, "core_plus”, "value_added"”, "opportunistic")
through [run_case ()] and extracts a compact set of indicators that are salient for both investors and

lenders:
Usage

styles_manifest(

styles = c("core”, "core_plus”, "value_added”, "opportunistic"”)

)
Arguments

styles Character vector of style names to include. Defaults to the four canonical pre-

sets: c("core”, "core_plus”, "value_added"”, "opportunistic”).

Details

* project IRR (all-equity),

* equity IRR (levered),

* minimum DSCR under a bullet structure,

* initial LTV at origination under a bullet structure,
e maximum forward LTV under a bullet structure,
* equity NPV.

The result is a tibble that can be reused both in vignettes and in automated tests to ensure that the
canonical presets preserve the intended risk—return and leverage—coverage hierarchies.

Value

A tibble with one row per style and the columns: style, class, irr_project, irr_equity,
dscr_min_bul, 1tv_init, 1tv_max_fwd, npv_equity.

styles_pv_split 39

styles_pv_split Present-value split between income and resale by style

Description

For each style preset, this helper:

* runs run_case() under the all-equity scenario,

* takes the cash-flow table used for the unlevered DCF,

* discounts positive cash inflows at the DCF discount rate,
* decomposes the resulting present value into:

— income = free cash flow excluding resale proceeds,

— resale = terminal sale proceeds.

Usage
styles_pv_split(
styles,
config_dir = system.file("extdata”, package = "cre.dcf")
)
Arguments
styles Character vector of style identifiers.
config_dir Directory where preset YAML files are stored.
Details

Year O (initial outlay) is excluded from the income/resale split so that shares remain numerically
stable and interpretable.

Value

A tibble with columns: style, pv_income, pv_resale, share_pv_income, share_pv_resale.

40 styles_revalue_yield_plus_growth

styles_revalue_yield_plus_growth
Re-evaluate styles under a yield-plus-growth discounting rule

Description

This helper re-runs a set of preset styles under a simplified "yield_plus_growth” discounting
convention, leaving all cash-flow assumptions unchanged. It is primarily used in vignettes and tests
to check that the qualitative ordering of styles (in terms of equity IRR and NPV) is robust to the
choice of discounting scheme.

Usage

styles_revalue_yield_plus_growth(
styles,
config_dir = system.file("extdata"”, package = "cre.dcf")

)
Arguments
styles Character vector of style identifiers, e.g. c("core”, "core_plus"”, "value_added”,
"opportunistic").
config_dir Directory from which preset YAML files are loaded. Defaults to the package
inst/extdata folder.
Details

For each style, the function:

1. loads the corresponding YAML preset file;
2. overrides disc_method <- "yield_plus_growth";

3. sets disc_rate_yield_plus_growth so that the property yield equals entry_yield and the
growth component equals index_rate;

4. calls [run_case()] and extracts the leveraged equity IRR and NPV.

Value
A tibble with one row per style and the columns:
* style (character),

e irr_equity_y: leveraged equity IRR under the "yield_plus_growth"” convention,

* npv_equity_y: leveraged equity NPV under the same convention.

sweep_sensitivities 41

sweep_sensitivities Sensitivity grid (rate / exit yield) and monotonicity of ratios

Description

For each (rate, exit_yield) pair, builds a bullet schedule, merges it with dcf_calculate() cash
flows, computes ratios via add_credit_ratios(), and returns min_dscr (t>= 1) and max_ltv_forward
(t>=1).

Usage

sweep_sensitivities(
dcf_res,
rate_grid,
exit_yield_grid,
1ltv = 0.6,
maturity = 5L

Arguments

dcf_res list. Output of dcf_calculate().
rate_grid numeric. Grid of annual nominal rates (decimal).
exit_yield_grid

numeric. Grid of exit_yield values (decimal).

1tv numeric(1). Initial LTV (default 0.60).
maturity integer(1). Maturity (years) of the bullet schedule.
Value

tibble with columns rate, exit_yield, min_dscr, max_ltv_forward.

test_refi Test the feasibility of a refinancing at year T (interest-only diagnostic)

Description

Assesses at \(T\) the simultaneous feasibility of DSCR and forward LTV covenants assuming an
interest-only payment at \(T+1\). This diagnostic isolates covenant feasibility from the precise
structure of the new loan.

Usage

test_refi(full, year_T, covenants, new_rate, new_exit_yield)

42 test_refi

Arguments
full data.frame. Merged table (0..N) from cf_make_full_table(), containing at
least: year, net_operating_income, outstanding_debt.
year_T integer(1). Evaluation year \(T\) (0..N).
covenants list. Thresholds: dscr_min (default 1.25), 1tv_max (default 0.65).
new_rate numeric(1). New annual nominal rate (decimal).

new_exit_yield numeric(1l). New exit yield (decimal) for forward value. NOI_{T+1} is missing
(default O if not provided as an attribute of full or in the DCF inputs).

Value

list with status ("ok"/"fail"), reasons (character) and snapshot (tibble).

Index

x datasets
cre_glossary, 15

add_credit_ratios, 3
add_credit_ratios(), 41
as_rate, 5

as_yaml, 5

build_lease_table, 6

cf_compute_levered, 9
cf_make_full_table, 10
cf_make_full_table(), 42
cfg_explain, 7

cfg_missing, 7

cfg_normalize, 8

cfg_validate, 9
compare_financing_scenarios, 12
compute_equity_invest, 13
compute_leveraged_metrics, 14
compute_leveraged_metrics(), 35
compute_noi_y1, 14
compute_unleveraged_metrics, 15
cre_glossary, 15

dcf_add_noi_columns, 16
dcf_calculate, 17
dcf_calculate(), 31,41
dcf_read_config, 19
dcf_spec_template, 19
dcf_write_yaml_template, 20
debt_built_schedule, 20
derive_exit_yield, 21

flag_covenants, 22
forward_value_from_noi, 22

get_cfg, 23
guard_rate, 24

init_debt_fees, 24

43

irr_partition, 25
irr_safe, 25

leases_tbl_structuration, 26
npv_rate, 27
price_from_cap, 27

run_case, 28
run_case(), 33-36, 3840
run_from_config, 29

select_terminal_noi, 30
simulate_shock, 31
style_bullet_ratios(), 32
styles_breach_counts, 32
styles_break_even_exit_yield, 33
styles_distressed_exit, 34
styles_equity_cashflows, 35
styles_exit_sensitivity, 36
styles_growth_sensitivity, 37
styles_manifest, 38
styles_pv_split, 39

styles_revalue_yield_plus_growth, 40

sweep_sensitivities, 41
test_refi, 41

uniroot, 26
uniroot(), 33

	add_credit_ratios
	as_rate
	as_yaml
	build_lease_table
	cfg_explain
	cfg_missing
	cfg_normalize
	cfg_validate
	cf_compute_levered
	cf_make_full_table
	compare_financing_scenarios
	compute_equity_invest
	compute_leveraged_metrics
	compute_noi_y1
	compute_unleveraged_metrics
	cre_glossary
	dcf_add_noi_columns
	dcf_calculate
	dcf_read_config
	dcf_spec_template
	dcf_write_yaml_template
	debt_built_schedule
	derive_exit_yield
	flag_covenants
	forward_value_from_noi
	get_cfg
	guard_rate
	init_debt_fees
	irr_partition
	irr_safe
	leases_tbl_structuration
	npv_rate
	price_from_cap
	run_case
	run_from_config
	select_terminal_noi
	simulate_shock
	styles_breach_counts
	styles_break_even_exit_yield
	styles_distressed_exit
	styles_equity_cashflows
	styles_exit_sensitivity
	styles_growth_sensitivity
	styles_manifest
	styles_pv_split
	styles_revalue_yield_plus_growth
	sweep_sensitivities
	test_refi
	Index

