# Package 'coca'

| October 12, 2022                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title Cluster-of-Clusters Analysis                                                                                                                                                                                                                   |
| Version 1.1.0                                                                                                                                                                                                                                        |
| Author Alessandra Cabassi [aut, cre] ( <a href="https://orcid.org/0000-0003-1605-652X">https://orcid.org/0000-0003-1605-652X</a> ), Paul DW Kirk [ths] ( <a href="https://orcid.org/0000-0002-5931-7489">https://orcid.org/0000-0002-5931-7489</a> ) |
| <b>Description</b> Contains the R functions needed to perform Cluster-Of-Clusters Analysis (COCA) and Consensus Clustering (CC). For further details please see Cabassi and Kirk (2020) <doi:10.1093 bioinformatics="" btaa593="">.</doi:10.1093>    |
| <b>Depends</b> R (>= $3.5.0$ )                                                                                                                                                                                                                       |
| License MIT + file LICENSE                                                                                                                                                                                                                           |
| <pre>URL http://github.com/acabassi/coca</pre>                                                                                                                                                                                                       |
| BugReports http://github.com/acabassi/coca/issues                                                                                                                                                                                                    |
| Encoding UTF-8                                                                                                                                                                                                                                       |
| LazyData true                                                                                                                                                                                                                                        |
| Imports caret, cluster, fpc, glmnet, Matrix, nnet, pheatmap, RColorBrewer, sparcl, stats                                                                                                                                                             |
| Suggests knitr, mclust, rmarkdown                                                                                                                                                                                                                    |
| RoxygenNote 7.1.0                                                                                                                                                                                                                                    |
| VignetteBuilder knitr                                                                                                                                                                                                                                |
| NeedsCompilation no                                                                                                                                                                                                                                  |
| Maintainer Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk></alessandra.cabassi@mrc-bsu.cam.ac.uk>                                                                                                                                          |
| Repository CRAN                                                                                                                                                                                                                                      |
| <b>Date/Publication</b> 2020-07-06 17:00:09 UTC                                                                                                                                                                                                      |
| R topics documented:                                                                                                                                                                                                                                 |
| buildMOC                                                                                                                                                                                                                                             |

2 buildMOC

|       | expandMOC       |      | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  | 10   |
|-------|-----------------|------|------|--|--|--|--|--|--|--|--|--|--|--|--|--|------|
|       | fillMOC         |      | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  | - 11 |
|       | maximiseSilhoue | ette | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  | 12   |
|       | plotMOC         |      | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  | 14   |
| Index |                 |      |      |  |  |  |  |  |  |  |  |  |  |  |  |  | 16   |
|       |                 |      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |      |

buildMOC

Build Matrix-Of-Clusters

## Description

This function creates a matrix of clusters starting from a list of heterogeneous datasets.

## Usage

```
buildMOC(
 data,
 Μ,
 K = NULL
 maxK = 10,
 methods = "hclust",
 distances = "euclidean",
  fill = FALSE,
  computeAccuracy = FALSE,
  fullData = FALSE,
  savePNG = FALSE,
 fileName = "buildMOC",
 widestGap = FALSE,
 dunns = FALSE,
 dunn2s = FALSE
)
```

## Arguments

| data | List of M datasets, each of size N X $P_m$ , where $m = 1,, M$ .                                                                                                                                                                                                                                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| М    | Number of datasets.                                                                                                                                                                                                                                                                                  |
| К    | Vector containing the number of clusters in each dataset. If given an integer instead of a vector it is assumed that each dataset has the same number of clusters. If NULL, it is assumed that the true cluster numbers are not known, therefore they will be estimated using the silhouette method. |
| maxK | Vector of maximum cluster numbers to be considered for each dataset if K is NULL. If given an integer instead of a vector it is assumed that for each dataset the same maximum number of clusters must be considered. Default is 10.                                                                 |

buildMOC 3

methods Vector of strings containing the names of the clustering methods to be used to

cluster the observations in each dataset. Each can be "kmeans" (k-means clustering), "hclust" (hierarchical clustering), or "pam" (partitioning around medoids). If the vector is of length one, the same clustering method is applied to all the

datasets. Default is "hclust".

distances Distances to be used in the clustering step for each dataset. If only one string is

provided, then the same distance is used for all datasets. If the number of strings provided is the same as the number of datasets, then each distance will be used for the corresponding dataset. Default is "euclidean". Please note that not all distances are compatible with all clustering methods. "euclidean" and "manhattan" work with all available clustering algorithms. "gower" distance is only available for partitioning around medoids. In addition, "maximum", "canberra",

"binary" or "minkowski" are available for k-means and hierarchical clustering.

Boolean. If TRUE, if there are any missing observations in one or more datasets, the corresponding cluster labels will be estimated through generalised linear

models on the basis of the available labels.

computeAccuracy

fill

Boolean. If TRUE, for each missing element, the performance of the predictive

model used to estimate the corresponding missing label is computer.

fullData Boolean. If TRUE, the full data matrices are used to estimate the missing cluster

labels (instead of just using the cluster labels of the corresponding datasets).

savePNG Boolean. If TRUE, plots of the silhouette for each datasets are saved as png

files. Default is FALSE.

fileName If savePNG is TRUE, this is the string containing the name of the output files.

Can be used to specify the folder path too. Default is "buildMOC". The ".png"

extension is automatically added to this string.

widestGap Boolean. If TRUE, compute also widest gap index to choose best number of

clusters. Default is FALSE.

dunns Boolean. If TRUE, compute also Dunn's index to choose best number of clus-

ters. Default is FALSE.

dunn2s Boolean. If TRUE, compute also alternative Dunn's index to choose best num-

ber of clusters. Default is FALSE.

## Value

This function returns a list containing:

moc the Matrix-Of-Clusters, a binary matrix of size N x sum(K) where element (n,k)

contains a 1 if observation n belongs to the corresponding cluster, 0 otherwise.

datasetIndicator

a vector of length sum(K) in which each element is the number of the dataset to

which the cluster belongs.

number\_nas the total number of NAs in the matrix of clusters. (If the MOC has been filled

with imputed values, number\_nas indicates the number of NAs in the original

MOC.)

clLabels a matrix that is equivalent to the matrix of clusters, but is in compact form, i.e. each column corresponds to a dataset, each row represents an observation, and

its values indicate the cluster labels.

K vector of cluster numbers in each dataset. If these are provided as input, this is the same as the input (expended to a vector if the input is an integer). If

is the same as the input (expanded to a vector if the input is an integer). If the cluster numbers are not provided as input, this vector contains the cluster

numbers chosen via silhouette for each dataset.

#### Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

#### References

The Cancer Genome Atlas, 2012. Comprehensive molecular portraits of human breast tumours. Nature, 487(7407), pp.61–70.

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, pp.53-65.

## **Examples**

```
# Load data
data <- list()
data[[1]] <- as.matrix(read.csv(system.file("extdata", "dataset1.csv",
package = "coca"), row.names = 1))
data[[2]] <- as.matrix(read.csv(system.file("extdata", "dataset2.csv",
package = "coca"), row.names = 1))
data[[3]] <- as.matrix(read.csv(system.file("extdata", "dataset3.csv",
package = "coca"), row.names = 1))

# Build matrix of clusters
outputBuildMOC <- buildMOC(data, M = 3, K = 6, distances = "cor")

# Extract matrix of clusters
matrixOfClusters <- outputBuildMOC$moc</pre>
```

chooseKusingAUC

Choose number of clusters based on AUC

## Description

This function allows to choose the number of clusters in a dataset based on the area under the curve of the empirical distribution function of a consensus matrix, calculated for different (consecutive) cluster numbers, as explained in the article by Monti et al. (2003), Section 3.3.1.

#### Usage

```
chooseKusingAUC(areaUnderTheCurve, savePNG = FALSE, fileName = "deltaAUC.png")
```

coca 5

#### **Arguments**

areaUnderTheCurve

Vector of length maxK-1 containing the area under the curve of the empirical distribution function of the consensus matrices obtained with K varying from 2

to maxK.

savePNG Boolean. If TRUE, a plot of the area under the curve for each value of K is saved

as a png file. The file is saved in a subdirectory of the working directory, called

"delta-auc". Default is FALSE.

fileName If savePNG is TRUE, this is the name of the png file. Can be used to specify the

folder path too. Default is "deltaAUC". The ".png" extension is automatically

added to this string.

#### Value

This function returns a list containing:

deltaAUC a vector of length maxK-1 where element i is the area under the curve for K =

i+1 minus the area under the curve for K = i (for i = 2 this is simply the area

under the curve for K = i)

K the lowest among the values of K that are chosen by the algorithm.

#### Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

#### References

Monti, S., Tamayo, P., Mesirov, J. and Golub, T., 2003. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine learning, 52(1-2), pp.91-118.

#### **Examples**

```
# Assuming that we want to choose among any value of K (number of clusters)
# between 2 and 10 and that the area under the curve is as follows:
areaUnderTheCurve <- c(0.05, 0.15, 0.4, 0.5, 0.55, 0.56, 0.57, 0.58, 0.59)
# The optimal value of K can be chosen with:
K <- chooseKusingAUC(areaUnderTheCurve)$K
```

coca

Cluster-Of-Clusters Analysis

#### **Description**

This function allows to do Cluster-Of-Clusters Analysis on a binary matrix where each column is a clustering of the data, each row corresponds to a data point and the element in position (i,j) is equal to 1 if data point i belongs to cluster j, 0 otherwise.

6 coca

#### Usage

```
coca(
 moc,
 K = NULL
 maxK = 6,
 B = 1000,
  pItem = 0.8,
  hclustMethod = "average",
  choiceKmethod = "silhouette",
  ccClMethod = "kmeans",
  ccDistHC = "euclidean";
 maxIterKM = 1000,
  savePNG = FALSE,
  fileName = "coca",
  verbose = FALSE,
 widestGap = FALSE,
  dunns = FALSE,
  dunn2s = FALSE,
  returnAllMatrices = FALSE
)
```

#### **Arguments**

moc N X C data matrix, where C is the total number of clusters considered.

K Number of clusters.

maxK Maximum number of clusters considered for the final clustering if K is not

known. Default is 6.

B Number of iterations of the Consensus Clustering step.

pItem Proportion of items sampled at each iteration of the Consensus Cluster step.

hclustMethod Agglomeration method to be used by the hclust function to perform hierarchical

clustering on the consensus matrix. Can be "single", "complete", "average", etc.

For more details please see ?stats::hclust.

choiceKmethod Method used to choose the number of clusters if K is NULL, can be either

"AUC" (area under the curve, work in progress) or "silhouette". Default is "sil-

houette".

ccclMethod Clustering method to be used by the Consensus Clustering algorithm (CC). Can

be either "kmeans" for k-means clustering or "hclust" for hiearchical clustering.

Default is "kmeans".

ccDistHC Distance to be used by the hiearchical clustering algorithm inside CC. Can be

"pearson" (for 1 - Pearson correlation), "spearman" (for 1- Spearman correlation), or any of the distances provided in stats::dist() (i.e. "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"). Default is "eu-

clidean".

maxIterKM Number of iterations for the k-means clustering algorithm. Default is 1000.

savePNG Boolean. Save plots as PNG files. Default is FALSE.

coca 7

fileName If savePNG is TRUE, this is the string containing (the first part of) the name of

the output files. Can be used to specify the folder path too. Default is "coca".

The ".png" extension is automatically added to this string.

verbose Boolean.

widestGap Boolean. If TRUE, compute also widest gap index to choose best number of

clusters. Default is FALSE.

dunns Boolean. If TRUE, compute also Dunn's index to choose best number of clus-

ters. Default is FALSE.

dunn2s Boolean. If TRUE, compute also alternative Dunn's index to choose best num-

ber of clusters. Default is FALSE.

returnAllMatrices

Boolean. If TRUE, return consensus matrices for all considered values of K.

Default is FALSE.

#### Value

This function returns a list containing:

consensusMatrix

a symmetric matrix where the element in position (i,j) corresponds to the proportion of times that items i and j have been clustered together and a vector of

cluster labels.

clusterLabels the final cluster labels.

K the final number of clusters. If provided by the user, this is the same as the input.

Otherwise, this is the number of clusters selected via the requested method (see

argument choiceKmethod).

consensusMatrices

if returnAllMatrices = TRUE, this array also returned, containing the consensus matrices obtained for each of the numbers of clusters considered by the algo-

rithm.

## Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

#### References

The Cancer Genome Atlas, 2012. Comprehensive molecular portraits of human breast tumours. Nature, 487(7407), pp.61–70.

Cabassi, A. and Kirk, P. D. W. (2019). Multiple kernel learning for integrative consensus clustering of 'omic datasets. arXiv preprint. arXiv:1904.07701.

```
# Load data
data <- list()
data[[1]] <- as.matrix(read.csv(system.file("extdata", "dataset1.csv",
package = "coca"), row.names = 1))</pre>
```

8 consensusCluster

```
data[[2]] <- as.matrix(read.csv(system.file("extdata", "dataset2.csv",
    package = "coca"), row.names = 1))
data[[3]] <- as.matrix(read.csv(system.file("extdata", "dataset3.csv",
    package = "coca"), row.names = 1))

# Build matrix of clusters
outputBuildMOC <- buildMOC(data, M = 3, K = 5, distances = "cor")

# Extract matrix of clusters
moc <- outputBuildMOC$moc

# Do Cluster-Of-Clusters Analysis
outputCOCA <- coca(moc, K = 5)

# Extract cluster labels
clusterLabels <- outputCOCA$clusterLabels</pre>
```

consensusCluster

Consensus clustering

## Description

This function allows to perform consensus clustering using the k-means clustering algorithm, for a fixed number of clusters. We consider the number of clusters K to be fixed.

## Usage

```
consensusCluster(
  data = NULL,
  K = 2,
  B = 100,
  pItem = 0.8,
  clMethod = "hclust",
  dist = "euclidean",
  hclustMethod = "average",
  sparseKmeansPenalty = NULL,
  maxIterKM = 1000
)
```

#### **Arguments**

| data  | N X P data matrix                              |
|-------|------------------------------------------------|
| K     | Number of clusters.                            |
| В     | Number of iterations.                          |
| pItem | Proportion of items sampled at each iteration. |

consensusCluster 9

clMethod Clustering algorithm. Can be "hclust" for hierarchical clustering, "kmeans" for

k-means clustering, "pam" for partitioning around medoids, "sparse-kmeans" for sparse k-means clustering or "sparse-hclust" for sparse hierarchical clustering. Default is "hclust". However, if the data contain at least one covariate that is a

factor, the default clustering algorithm is "pam".

dist Distance used for hierarchical clustering. Can be "pearson" (for 1 - Pearson cor-

relation), "spearman" (for 1- Spearman correlation), any of the distances provided in stats::dist() (i.e. "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"), or a matrix containing the distances between the ob-

servations.

hclustMethod Hierarchical clustering method. Default is "average". For more details see

?hclust.

sparseKmeansPenalty

If the selected clustering method is "sparse-kmeans", this is the value of the parameter "wbounds" of the "KMeansSparseCluster" function. The default value

is the square root of the number of variables.

maxIterKM Number of iterations for the k-means clustering algorithm.

#### Value

The output is a consensus matrix, that is a symmetric matrix where the element in position (i,j) corresponds to the proportion of times that items i and j have been clustered together.

#### Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

## References

Monti, S., Tamayo, P., Mesirov, J. and Golub, T., 2003. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Machine learning, 52(1-2), pp.91-118.

Witten, D.M. and Tibshirani, R., 2010. A framework for feature selection in clustering. Journal of the American Statistical Association, 105(490), pp.713-726.

```
# Load one dataset with 300 observations, 2 variables, 6 clusters
data <- as.matrix(read.csv(system.file("extdata", "dataset1.csv",
package = "coca"), row.names = 1))

# Compute consensus clustering with K=5 clusters
cm <- consensusCluster(data, K = 5)</pre>
```

10 expandMOC

expandM0C

Expand matrix of clusters

#### **Description**

Expand matrix of cluster labels into matrix of clusters

#### Usage

```
expandMOC(clLabels, datasetNames = NULL)
```

#### **Arguments**

clLabels Matrix of cluster labels of size N x M.

datasetNames Vector of cluster names of length M. Default is NULL.

#### Value

The output is a list containing:

moc the matrix of clusters.

datasetIndicator

a vector containing the dataset indicator.

datasetNames an expanded vector of dataset names for the moc.

## Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

```
# Load data
data <- list()
data[[1]] <- as.matrix(read.csv(system.file("extdata", "dataset1.csv",
package = "coca"), row.names = 1))
data[[2]] <- as.matrix(read.csv(system.file("extdata", "dataset2.csv",
package = "coca"), row.names = 1))
data[[3]] <- as.matrix(read.csv(system.file("extdata", "dataset3.csv",
package = "coca"), row.names = 1))

# Build matrix of clusters
outputBuildMOC <- buildMOC(data, M = 3, K = 6, distances = "cor")

# Extract matrix of clusters
clLabels <- outputBuildMOC$clLabels

# Impute missing values
outputFillMOC <- fillMOC(clLabels, data = data)</pre>
```

fillMOC 11

```
# Replace matrix of cluster labels with new (full) one
clLabels <- outputFillMOC$fullClLabels

# Expand matrix of cluster labels into matrix of clusters
outputExpandMOC <- expandMOC(clLabels)
clLabels <- outputExpandMOC$clLabels</pre>
```

fillMOC

Fill Matrix-Of-Clusters

## Description

This function fills in a matrix of clusters that contains NAs, by estimating the missing cluster labels based on the available ones or based on the other datasets. The predictive accuracy of this method can also be estimated via cross-validation.

## Usage

```
fillMOC(clLabels, data, computeAccuracy = FALSE, verbose = FALSE)
```

#### **Arguments**

clLabels NXM matrix containing cluster labels. Element (n,m) contains the cluster label

for element data point n in cluster m.

data List of M datasets to be used for the label imputation.

computeAccuracy

Boolean. If TRUE, for each missing element, the performance of the predictive model used to estimate the corresponding missing label is computer. Default is

FALSE.

verbose Boolean. If TRUE, for each NA, the size of the matrix used to estimate its values

is printed to screen. Default is FALSE.

#### Value

The output is a list containing:

fullClLabels the same matrix of clusters as the input matrix clLabels, where NAs have been

replaced by their estimates, where possible.

nRows matrix where the item in position (i,j) indicates the number of observations used

in the predictive model used to estimate the corresponding missing label in the

fullClLabels matrix.

nColumns matrix where the item in position (i,j) indicates the number of covariates used

in the predictive model used to estimate the corresponding missing label in the

fullClLabels matrix.

accuracy a matrix where each element corresponds to the predictive accuracy of the pre-

dictive model used to estimate the corresponding label in the cluster label matrix.

This is only returned if the argument computeAccuracy is set to TRUE.

12 maximiseSilhouette

accuracy\_random

This is computed in the same way as accuracy, but with the labels randomly shuffled. This can be used in order to assess the predictive accuracy of the imputation algorithm and is returned only if the argument computeAccuracy is set to TRUE.

#### Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

#### References

The Cancer Genome Atlas, 2012. Comprehensive molecular portraits of human breast tumours. Nature, 487(7407), pp.61–70.

## **Examples**

```
# Load data
data <- list()</pre>
data[[1]] <- as.matrix(read.csv(system.file("extdata", "dataset1.csv",</pre>
                        package = "coca"), row.names = 1))
data[[2]] <- as.matrix(read.csv(system.file("extdata", "dataset2.csv",</pre>
                        package = "coca"), row.names = 1))
data[[3]] <- as.matrix(read.csv(system.file("extdata", "dataset3.csv",</pre>
                        package = "coca"), row.names = 1))
# Build matrix of clusters
outputBuildMOC <- buildMOC(data, M = 3, K = 6, distances = "cor")
# Extract matrix of clusters
clLabels <- outputBuildMOC$clLabels</pre>
# Impute missing values using full datasets
outputFillMOC <- fillMOC(clLabels, data)</pre>
# Extract full matrix of cluster labels
clLabels2 <- outputFillMOC$fullClLabels</pre>
```

maximiseSilhouette

Choose K that maximises the silhouette from a set of kernel matrices and clusterings

#### **Description**

Choose the number of clusters K that maximises the silhouette, starting from a set of kernel matrices each corresponding to a different choice of K and the corresponding clusterings of the data for each of those values of K.

maximiseSilhouette 13

#### Usage

```
maximiseSilhouette(
   kernelMatrix,
   clLabels,
   maxK,
   savePNG = FALSE,
   fileName = "silhouette",
   isDistance = FALSE,
   widestGap = FALSE,
   dunns = FALSE,
   dunn2s = FALSE
)
```

#### **Arguments**

kernelMatrix N X N X (maxK-1) array of kernel matrices.

clLabels (maxK-1) X N matrix containing the clusterings obtained for different values of

K.

maxK Maximum number of clusters considered.

savePNG If TRUE, a plot of the silhouette is saved in the working folder. Defaults to

FALSE.

fileName If savePNG is TRUE, this is the name of the png file.

isDistance Boolean. If TRUE, the kernel matrices are interpreted as matrices of distances,

otherwise as matrices of similarities.

widestGap Boolean. If TRUE, also computes widest gap index (and plots it if savePNG is

TRUE).

dunns Boolean. If TRUE, also computes Dunn's index: minimum separation / maxi-

mum diameter (and plots it if savePNG is TRUE).

dunn2s Boolean. If TRUE, also computes an alternative version of Dunn's index: mini-

mum average dissimilarity between two cluster / maximum average within clus-

ter dissimilarity (and plots it if savePNG is TRUE).

#### Value

The function returns a list containing:

silh a vector of length maxK-1 such that silh[i] is the silhouette for K = i+1

K the lowest number of clusters for which the silhouette is maximised.

#### Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

14 plotMOC

plotMOC

Plot Matrix-Of-Clusters

#### **Description**

This function creates a matrix of clusters, starting from a list of heterogeneous datasets.

## Usage

```
plotMOC(
   moc,
   datasetIndicator,
   datasetNames = NULL,
   annotations = NULL,
   clr = FALSE,
   clc = FALSE,
   savePNG = FALSE,
   fileName = "moc.png",
   showObsNames = FALSE,
   showClusterNames = FALSE,
   annotation_colors = NA
)
```

#### **Arguments**

moc Matrix-Of-Clusters of size N x sumK.

datasetIndicator

Vector containing integers indicating which rows correspond to some clustering

of the same dataset.

datasetNames Vector containing the names of the datasets to which each column of labels cor-

responds. If NULL, datasetNames will be the same as datasetIndicator. Default

is NULL.

annotations Dataframe containing annotations. Number of rows must be N. If the annota-

tions are integers, use as.factor() for a better visual result.

clr Cluster rows. Default is FALSE.
clc Cluster columns. Default is FALSE.

savePNG Boolean. If TRUE, plot is saved as a png file.

fileName If savePNG is TRUE, this is the string containing the name of the moc figure.

Can be used to specify the folder path too. Default is "moc". The ".png" exten-

sion is automatically added to this string.

showObsNames Boolean. If TRUE, the plot will also include the column names (i.e. name of

each observation). Default is FALSE, since there are usually too many columns.

showClusterNames

Boolean. If TRUE, plot cluster names next to corresponding row. Default is

FALSE.

annotation\_colors

Optional. See annotation\_colors in pheatmap::pheatmap.

plotMOC 15

#### Author(s)

Alessandra Cabassi <alessandra.cabassi@mrc-bsu.cam.ac.uk>

#### References

The Cancer Genome Atlas, 2012. Comprehensive molecular portraits of human breast tumours. Nature, 487(7407), pp.61–70.

```
# Load data
data <- list()</pre>
data[[1]] <- as.matrix(read.csv(system.file("extdata", "dataset1.csv",</pre>
package = "coca"), row.names = 1))
data[[2]] <- as.matrix(read.csv(system.file("extdata", "dataset2.csv",</pre>
package = "coca"), row.names = 1))
data[[3]] <- as.matrix(read.csv(system.file("extdata", "dataset3.csv",</pre>
package = "coca"), row.names = 1))
# Create vector of dataset names, in the same order as they appear above
datasetNames <- c("Dataset1", "Dataset2", "Dataset3")</pre>
# Build matrix of clusters
outputBuildMOC <- buildMOC(data, M = 3, K = 6, distances = "cor")</pre>
# Extract matrix of clusters and dataset indicator vector
moc <- outputBuildMOC$moc</pre>
datasetIndicator <- outputBuildMOC$datasetIndicator</pre>
# Prepare annotations
true_labels <- as.matrix(read.csv(</pre>
system.file("extdata", "cluster_labels.csv", package = "coca"),
row.names = 1))
annotations <- data.frame(true_labels = as.factor(true_labels))</pre>
# Plot matrix of clusters
plotMOC(moc,
        datasetIndicator,
        datasetNames = datasetNames,
        annotations = annotations)
```

## **Index**

```
buildMOC, 2
chooseKusingAUC, 4
coca, 5
consensusCluster, 8
expandMOC, 10
fillMOC, 11
maximiseSilhouette, 12
plotMOC, 14
```