## ----label=sourcing----------------------------------------------------------- library(coarseDataTools) data(simulated.outbreak.deaths) ## ----label=datapeek----------------------------------------------------------- simulated.outbreak.deaths[15:20, ] ## ----label=preprocessing------------------------------------------------------ ## set minimum number of observed cases for inclusion min.cases <- 10 ## observed cases N.1 <- simulated.outbreak.deaths[1:60, "N"] N.2 <- simulated.outbreak.deaths[61:120, "N"] ## subset to run analyis on times with greater than min.cases first.t <- min(which(N.1 > min.cases & N.2 > min.cases)) last.t <- max(which(N.1 > min.cases & N.2 > min.cases)) idx.for.Estep <- first.t:last.t ## find and label the subset of times to be used for estimation routine new.times <- seq_along(idx.for.Estep) simulated.outbreak.deaths <- cbind(simulated.outbreak.deaths, new.times = NA) simulated.outbreak.deaths[c(idx.for.Estep, idx.for.Estep + 60), "new.times"] <- rep(new.times, 2) ## ----label=datapeek2---------------------------------------------------------- simulated.outbreak.deaths[15:20, ] ## ----label=setValues---------------------------------------------------------- assumed.nu <- c(0, 0.3, 0.4, 0.3) alpha.start <- rep(0, 22) ## ----label=runAnalysis, cache=TRUE, warning=FALSE----------------------------- cfr.ests <- EMforCFR( assumed.nu = assumed.nu, alpha.start.values = alpha.start, full.data = simulated.outbreak.deaths, verb = FALSE, SEM.var = TRUE, max.iter = 100, tol = 1e-5 ) ## ----label=estimationResults-------------------------------------------------- cfr.ests$naive.rel.cfr cfr.ests$glm.rel.cfr cfr.ests$EM.rel.cfr cfr.ests$EM.rel.cfr.var.SEM