--- title: "clinCompare: Dataset Comparison with CDISC Validation" author: "Siddharth Lokineni" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{clinCompare: Dataset Comparison with CDISC Validation} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## Introduction clinCompare is an R package for comparing datasets at the dataset, variable, and observation level. For clinical trial data, an optional CDISC validation layer checks SDTM and ADaM conformance automatically. The package is designed for statistical programmers, data managers, and regulatory professionals who need to ensure data quality and compliance with industry standards. ### Key Features - Compare dimensions, variable names, data types, and values in a single call - Key-based row matching with auto-detected CDISC ID variables - CDISC validation for 51 SDTM domains and 14 ADaM datasets - Export results to HTML, plain text, or Excel - Batch compare entire submissions across two directories - Numeric tolerance for floating-point comparisons ## Getting Started ```{r setup} library(clinCompare) ``` ## Basic Dataset Comparison ### Comparing Two Data Frames The `compare_datasets()` function gives a comprehensive overview: dimension checks, variable comparison, type mismatches, and row-level value differences. ```{r compare-datasets} baseline <- data.frame( USUBJID = c("SUBJ01", "SUBJ02", "SUBJ03"), AGE = c(45, 52, 38), SEX = c("M", "F", "M"), RACE = c("WHITE", "WHITE", "ASIAN"), stringsAsFactors = FALSE ) updated <- data.frame( USUBJID = c("SUBJ01", "SUBJ02", "SUBJ03"), AGE = c(45, 53, 38), SEX = c("M", "F", "F"), RACE = c("WHITE", "WHITE", "ASIAN"), stringsAsFactors = FALSE ) result <- compare_datasets(baseline, updated) result ``` The result is a structured list you can drill into programmatically: ```{r drill-into-result} # Per-column difference counts result$observation_comparison$discrepancies # Row-level details for a specific variable result$observation_comparison$details$SEX ``` ### Comparing Variables Use `compare_variables()` to focus on structural differences between two datasets -- column names, data types, and variable ordering. ```{r compare-variables} df_a <- data.frame( USUBJID = c("SUBJ01", "SUBJ02"), AGE = c(45, 52), SEX = c("M", "F"), stringsAsFactors = FALSE ) df_b <- data.frame( USUBJID = c("SUBJ01", "SUBJ02"), AGE = c(45L, 52L), WEIGHT = c(75.5, 80.2), stringsAsFactors = FALSE ) compare_variables(df_a, df_b) ``` ### Comparing Observations Use `compare_observations()` for row-by-row value comparison on common columns: ```{r compare-observations} df1 <- data.frame( ID = c(1, 2, 3), SCORE = c(80, 90, 70), stringsAsFactors = FALSE ) df2 <- data.frame( ID = c(1, 2, 3), SCORE = c(80, 95, 70), stringsAsFactors = FALSE ) compare_observations(df1, df2) ``` ## Data Preparation ### Cleaning Data Remove duplicates and standardize text case before comparing: ```{r clean-dataset} messy <- data.frame( NAME = c("Alice", "alice", "Bob", "Bob"), SCORE = c(100, 100, 85, 85), stringsAsFactors = FALSE ) clean_dataset(messy, remove_duplicates = TRUE, convert_to_case = "upper") ``` ### Sorting and Filtering Prepare two datasets identically before comparison: ```{r prepare-datasets} df_unsorted1 <- data.frame( REGION = c("West", "East", "North"), SALES = c(150, 200, 180) ) df_unsorted2 <- data.frame( REGION = c("East", "North", "West"), SALES = c(210, 185, 160) ) prepped <- prepare_datasets(df_unsorted1, df_unsorted2, sort_columns = "REGION") prepped$df1 prepped$df2 ``` ## Group-Wise Comparison Compare datasets within specific subgroups. Useful for multi-site or multi-arm studies: ```{r compare-by-group} site_data_v1 <- data.frame( SITEID = c("SITE01", "SITE01", "SITE02", "SITE02"), SUBJID = c("S01", "S02", "S03", "S04"), AGE = c(45, 52, 38, 61) ) site_data_v2 <- data.frame( SITEID = c("SITE01", "SITE01", "SITE02", "SITE02"), SUBJID = c("S01", "S02", "S03", "S04"), AGE = c(45, 53, 38, 62) ) by_site <- compare_by_group(site_data_v1, site_data_v2, group_vars = "SITEID") names(by_site) ``` ## CDISC Comparison ### What is CDISC? CDISC (Clinical Data Interchange Standards Consortium) provides standardized formats for regulatory submissions: - **SDTM** (Study Data Tabulation Model): Raw data from clinical trials - **ADaM** (Analysis Data Model): Derived datasets used for statistical analysis CDISC validation ensures that datasets meet industry standards and regulatory requirements. For official CDISC standards documentation, see . ### Auto-Detecting CDISC Domains clinCompare auto-detects the CDISC domain of a dataset using column matching, ADaM indicator columns, and filename hints: ```{r detect-domain} dm_data <- data.frame( STUDYID = rep("STUDY01", 3), USUBJID = c("SUBJ01", "SUBJ02", "SUBJ03"), AGE = c(45, 62, 51), SEX = c("M", "F", "M"), RACE = c("WHITE", "BLACK", "ASIAN"), ARMCD = c("TRT", "PBO", "TRT"), ARM = c("Treatment", "Placebo", "Treatment"), stringsAsFactors = FALSE ) detect_cdisc_domain(dm_data) ``` ### Comparing with CDISC Validation `cdisc_compare()` is the flagship function. It compares two datasets, auto-detects the CDISC domain and key variables, performs key-based row matching, and validates against CDISC standards -- all in one call. ```{r cdisc-compare} dm_v1 <- data.frame( STUDYID = rep("STUDY01", 3), USUBJID = c("SUBJ01", "SUBJ02", "SUBJ03"), AGE = c(45, 62, 51), SEX = c("M", "F", "M"), RACE = c("WHITE", "BLACK", "ASIAN"), ARMCD = c("TRT", "PBO", "TRT"), ARM = c("Treatment", "Placebo", "Treatment"), RFSTDTC = c("2024-01-15", "2024-01-16", "2024-01-17"), stringsAsFactors = FALSE ) dm_v2 <- data.frame( STUDYID = rep("STUDY01", 3), USUBJID = c("SUBJ01", "SUBJ02", "SUBJ03"), AGE = c(45, 62, 52), SEX = c("M", "F", "M"), RACE = c("WHITE", "BLACK", "ASIAN"), ARMCD = c("TRT", "PBO", "TRT"), ARM = c("Treatment", "Placebo", "Treatment"), RFSTDTC = c("2024-01-15", "2024-01-16", "2024-01-17"), stringsAsFactors = FALSE ) cdisc_result <- cdisc_compare(dm_v1, dm_v2, domain = "DM", standard = "SDTM") cdisc_result ``` ### Validating a Single Dataset Use `validate_cdisc()` to check a dataset against CDISC standards without comparing it to another dataset: ```{r validate-cdisc} validation <- validate_cdisc(dm_v1, domain = "DM", standard = "SDTM") ``` ### Extracting All Differences `get_all_differences()` returns every value-level difference as a single long-format data frame, making it easy to filter, count, or export: ```{r get-all-diffs} diffs <- get_all_differences(cdisc_result) diffs ``` ## Exporting Reports `export_report()` auto-detects the output format from the file extension: ```{r export-report} # HTML report export_report(cdisc_result, file.path(tempdir(), "dm_report.html")) # Text report export_report(cdisc_result, file.path(tempdir(), "dm_report.txt")) ``` Excel export requires the `openxlsx` package: ```{r export-excel, eval=FALSE} # Excel workbook with Summary, Variable Diffs, Value Diffs, and CDISC tabs export_report(cdisc_result, file.path(tempdir(), "dm_report.xlsx")) ``` ## Batch Comparing a Submission `compare_submission()` scans two directories, matches files by name, and runs `cdisc_compare()` on every matched pair. Domain, standard, and key variables are all auto-detected per file. ```{r batch-compare, eval=FALSE} results <- compare_submission( base_dir = "submission_v1/", compare_dir = "submission_v2/", output_file = "submission_diff.xlsx" ) ``` ## CDISC Coverage clinCompare ships with hand-curated metadata for **51 SDTM domains** (IG 3.4, with 3.3 support) and **14 ADaM datasets** (IG 1.3, with 1.2/1.1 provenance tracking). **SDTM domains:** AE, AG, BE, BS, CE, CM, CO, CP, DA, DD, DM, DS, DV, EC, EG, EX, FA, GF, HO, IE, IS, LB, MB, MH, MI, ML, MS, PC, PE, PP, PR, QS, RELREC, RS, SC, SE, SM, SS, SU, SUPPQUAL, SV, TA, TD, TE, TI, TM, TR, TS, TU, TV, VS. **ADaM datasets:** ADAE, ADCM, ADEG, ADEFF, ADEX, ADLB, ADMH, ADPC, ADPP, ADRS, ADSL, ADTR, ADTTE, ADVS. **Disclaimer:** clinCompare is a quality-assurance and exploratory analysis tool. It is not a substitute for official CDISC compliance validation software (e.g., Pinnacle 21). For regulatory submissions, always cross-reference with your organization's validated tools. ## Summary clinCompare provides a complete workflow for dataset comparison in clinical trials: compare any two data frames with `compare_datasets()`, add CDISC validation with `cdisc_compare()`, batch process entire submissions with `compare_submission()`, and export results to HTML, text, or Excel with `export_report()`. For more information and additional examples, visit the [GitHub repository](https://github.com/siddharthlokineni/clinCompare).