## ----eval=FALSE--------------------------------------------------------------- # name <- civis::users_list_me()$name # paste(name, "is really awesome!") ## ----eval=FALSE--------------------------------------------------------------- # library(civis) # # # First we'll load a dataframe of the famous iris dataset # data(iris) # # # We'll set a default database and define the table where want to # # store our data # options(civis.default_db = "my_database") # iris_tablename <- "my_schema.my_table" # # # Next we'll push the data to the database table # write_civis(iris, iris_tablename) # # # Great, now let's read it back # df <- read_civis(iris_tablename) # # # Hmmm, I'm more partial to setosa myself. Let's write a custom sql query. # # We'll need to wrap our query string in `sql` to let read_civis know we # # are passing in a sql command rather than a tablename. # query_str <- paste("SELECT * FROM", iris_tablename, "WHERE Species = 'setosa'") # iris_setosa <- read_civis(sql(query_str)) # # # Now let's store this data along with a note as a serialized R object # # on a remote file system. We could store any object remotely this way. # data <- list(data = iris_setosa, special_note = "The best iris species") # file_id <- write_civis_file(data) # # # Finally, let's read back our data from the remote file system. # data2 <- read_civis(file_id) # data2[["special_note"]] # # ## [1] "The best iris species" ## ----eval=FALSE--------------------------------------------------------------- # library(civis) # # # It really is a great dataset # data(iris) # # # Gradient boosting or random forest, who will win? # gb_model <- civis_ml_gradient_boosting_classifier(iris, "Species") # rf_model <- civis_ml_random_forest_classifier(iris, "Species") # macroavgs <- list(gb_model = gb_model$metrics$metrics$roc_auc_macroavg, # rf_model = rf_model$metrics$metrics$roc_auc_macroavg) # macroavgs # # ## $gb_model # ## [1] 0.9945333 # ## # ## $rf_model # ## [1] 0.9954667