Accelerate Bayesian analytics workflows in 'R' through interactive modelling,
    visualization, and inference. Define probabilistic graphical models using directed
    acyclic graphs (DAGs) as a unifying language for business stakeholders, statisticians, 
    and programmers. This package relies on interfacing with the 'numpyro' python package. 
| Version: | 
0.6.0 | 
| Depends: | 
R (≥ 4.1.0) | 
| Imports: | 
DiagrammeR (≥ 1.0.9), dplyr (≥ 1.0.8), magrittr (≥ 1.5), ggplot2 (≥ 3.4.0), rlang (≥ 1.0.2), purrr (≥ 1.0.0), tidyr (≥ 1.1.4), igraph (≥ 1.2.7), stringr (≥ 1.4.1), cowplot (≥
1.1.0), forcats (≥ 0.5.0), rstudioapi (≥ 0.11), lifecycle (≥
1.0.2), reticulate (≥ 1.30) | 
| Suggests: | 
knitr, covr, testthat (≥ 3.0.0), rmarkdown, extraDistr, mvtnorm | 
| Published: | 
2025-09-12 | 
| DOI: | 
10.32614/CRAN.package.causact | 
| Author: | 
Adam Fleischhacker [aut, cre, cph],
  Daniela Dapena [ctb],
  Rose Nguyen [ctb],
  Jared Sharpe [ctb] | 
| Maintainer: | 
Adam Fleischhacker  <ajf at udel.edu> | 
| BugReports: | 
https://github.com/flyaflya/causact/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/flyaflya/causact, https://www.causact.com/ | 
| NeedsCompilation: | 
no | 
| SystemRequirements: | 
Python and numpyro are needed for Bayesian
inference computations; python (>= 3.8) with header files and
shared library; numpyro (= v0.12.1;
https://https://num.pyro.ai/en/latest/index.html); arviz (=
v0.15.1; https://https://python.arviz.org/en/stable/) | 
| Citation: | 
causact citation info  | 
| Materials: | 
README, NEWS  | 
| In views: | 
Bayesian | 
| CRAN checks: | 
causact results |