## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(cNORM) library(ggplot2) ## ----fig0, fig.height = 4, fig.width = 7-------------------------------------- library(cNORM) # Models the 'raw' variable as a function of the discrete 'group' variable model <- cnorm(raw = elfe$raw, group = elfe$group) ## ----------------------------------------------------------------------------- print(model) ## ----fig1, fig.height = 4, fig.width = 7-------------------------------------- plot(model, "subset", type = 0) ## ----------------------------------------------------------------------------- predictNorm(15, 4.7, model, minNorm = 25, maxNorm = 75) ## ----------------------------------------------------------------------------- predictRaw(55, 4.5, model, minRaw = 0, maxRaw = 28) # ... or for several norm scores and age levels ... predictRaw(c(45, 50, 55), c(2.5, 3, 3.5), model) ## ----------------------------------------------------------------------------- normTable(3, model, minRaw = 0, maxRaw = 28, minNorm=30.5, maxNorm=69.5, step = 1) ## ----------------------------------------------------------------------------- rawTable(3.5, model, minRaw = 0, maxRaw = 28, minNorm = 25, maxNorm = 75, step = 1, CI = .95, reliability = .89) # generate several raw tables table <- rawTable(c(2.5, 3.5, 4.5), model, minRaw = 0, maxRaw = 28) ## ----fig2, fig.height = 7, fig.width = 7-------------------------------------- plot(model, "raw", group = TRUE) ## ----fig3, fig.height = 7, fig.width = 7-------------------------------------- plot(model, "norm", group = TRUE, minNorm = 25, maxNorm = 75) ## ----fig4, fig.height = 4, fig.width = 7-------------------------------------- plot(model, "density", group = c (2, 3, 4)) ## ----fig5, fig.height = 4, fig.width = 7-------------------------------------- plot(model, "derivative")