## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----fig0, fig.height = 4, fig.width = 7-------------------------------------- ## Loads the package and displays the data library(cNORM) str(ppvt) plot(ppvt$age, ppvt$raw, main="PPVT Raw Scores by Age", xlab="Age", ylab="Raw score") ## ----fig1, fig.height = 4, fig.width = 7-------------------------------------- # Models the data across a continuos explanatroy variable such as age, # thereby assuming that the raw scores follow a beta-binomial distribution # at a given age level: model.betabinomial <- cnorm.betabinomial(age = ppvt$age, score = ppvt$raw, n = 228) ## ----------------------------------------------------------------------------- # Provides fit indices diagnostics.betabinomial(model.betabinomial, age = ppvt$age, score = ppvt$raw) ## ----------------------------------------------------------------------------- # Provides norm scores for specified age levels and raw scores. # If not specified otherwise in the model, the norm scores will # be returned as T-scores. predict(model.betabinomial, c(10.125, 10.375, 10.625, 10.875), c(200, 200, 200, 200)) ## ----fig2, fig.height = 4, fig.width = 7-------------------------------------- # Calculates weights and models the data: margins <- data.frame(variables = c("sex", "sex", "migration", "migration"), levels = c(1, 2, 0, 1), share = c(.52, .48, .7, .3)) weights <- computeWeights(ppvt, margins) model_weighted <- cnorm.betabinomial(ppvt$age, ppvt$raw, weights = weights) ## ----------------------------------------------------------------------------- # Generates norm tables for age 14.25 and 14.75 and computes 95%-confidence # intervals with a reliability of .97. tables <- normTable.betabinomial(model.betabinomial, c(14.25, 14.75), CI = .95, reliability = .97) head(tables[[1]]) # head is used to show only the first few rows of the table