brglm2

CRAN_Status_Badge R-CMD-check Codecov test coverage Licence Contributor Covenant Codecov test coverage

brglm2 provides tools for the estimation and inference from generalized linear models using various methods for bias reduction. brglm2 supports all generalized linear models supported in R, and provides methods for multinomial logistic regression (nominal responses), adjacent category models (ordinal responses), and negative binomial regression (for potentially overdispered count responses).

Reduction of estimation bias is achieved by solving either the mean-bias reducing adjusted score equations in Firth (1993) and Kosmidis & Firth (2009) or the median-bias reducing adjusted score equations in Kenne et al (2017), or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as prescribed in Cordeiro and McCullagh (1991). Kosmidis et al (2020) provides a unifying framework and algorithms for mean and median bias reduction for the estimation of generalized linear models.

In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score equations return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation). See, Kosmidis & Firth (2021) for the proof of the latter result in the case of mean bias reduction for logistic regression (and, for more general binomial-response models where the likelihood is penalized by a power of the Jeffreys’ invariant prior).

For logistic regression, brglm2 also provides methods for maximum Diaconis-Ylvisaker prior penalized likelihood (MDYPL) estimation, and corresponding methods for high-dimensionality corrections of the aggregate bias of the estimator and the usual statistics used for inference; see Sterzinger and Kosmidis, 2024.

The core model fitters are implemented by the functions brglm_fit() (univariate generalized linear models) and mdyplFit() (logistic regression), and brmultinom() (baseline category logit models for nominal multinomial responses), bracl() (adjacent category logit models for ordinal multinomial responses), and brnb() (negative binomial regression).

Installation

Install the current version from CRAN:

install.packages("brglm2")

or the development version from github:

# install.packages("remotes")
remotes::install_github("ikosmidis/brglm2", ref = "develop")

Examples

Estimation of binomial-response GLMs with separated data

Below we follow the example of Heinze and Schemper (2002) and fit a logistic regression model using maximum likelihood (ML) to analyze data from a study on endometrial cancer (see ?brglm2::endometrial for details and references).

library("brglm2")
data("endometrial", package = "brglm2")
modML <- glm(HG ~ NV + PI + EH, family = binomial("logit"), data = endometrial)
summary(modML)
#> 
#> Call:
#> glm(formula = HG ~ NV + PI + EH, family = binomial("logit"), 
#>     data = endometrial)
#> 
#> Coefficients:
#>               Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)    4.30452    1.63730   2.629 0.008563 ** 
#> NV            18.18556 1715.75089   0.011 0.991543    
#> PI            -0.04218    0.04433  -0.952 0.341333    
#> EH            -2.90261    0.84555  -3.433 0.000597 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for binomial family taken to be 1)
#> 
#>     Null deviance: 104.903  on 78  degrees of freedom
#> Residual deviance:  55.393  on 75  degrees of freedom
#> AIC: 63.393
#> 
#> Number of Fisher Scoring iterations: 17

The ML estimate of the parameter for NV is actually infinite, as can be quickly verified using the detectseparation R package

# install.packages("detectseparation")
library("detectseparation")
#> 
#> Attaching package: 'detectseparation'
#> The following objects are masked from 'package:brglm2':
#> 
#>     check_infinite_estimates, detect_separation
update(modML, method = detect_separation)
#> Implementation: ROI | Solver: lpsolve 
#> Separation: TRUE 
#> Existence of maximum likelihood estimates
#> (Intercept)          NV          PI          EH 
#>           0         Inf           0           0 
#> 0: finite value, Inf: infinity, -Inf: -infinity

The reported, apparently finite estimate r round(coef(summary(modML))["NV", "Estimate"], 3) for NV is merely due to false convergence of the iterative estimation procedure for ML. The same is true for the estimated standard error, and, hence the value 0.011 for the z-statistic cannot be trusted for inference on the effect size for NV.

As mentioned earlier, many of the estimation methods implemented in brglm2 not only return estimates with improved frequentist properties (e.g. asymptotically smaller mean and median bias than what ML typically delivers), but also estimates and estimated standard errors that are always finite in binomial (e.g. logistic, probit, and complementary log-log regression) and multinomial regression models (e.g. baseline category logit models for nominal responses, and adjacent category logit models for ordinal responses). For example, the code chunk below refits the model on the endometrial cancer study data using mean bias reduction.

summary(update(modML, method = "brglm_fit"))
#> 
#> Call:
#> glm(formula = HG ~ NV + PI + EH, family = binomial("logit"), 
#>     data = endometrial, method = "brglm_fit")
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -1.4740  -0.6706  -0.3411   0.3252   2.6123  
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept)  3.77456    1.48869   2.535 0.011229 *  
#> NV           2.92927    1.55076   1.889 0.058902 .  
#> PI          -0.03475    0.03958  -0.878 0.379915    
#> EH          -2.60416    0.77602  -3.356 0.000791 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for binomial family taken to be 1)
#> 
#>     Null deviance: 104.903  on 78  degrees of freedom
#> Residual deviance:  56.575  on 75  degrees of freedom
#> AIC:  64.575
#> 
#> Type of estimator: AS_mixed (mixed bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 6

A quick comparison of the output from mean bias reduction to that from ML reveals a dramatic change in the z-statistic for NV, now that estimates and estimated standard errors are finite. In particular, the evidence against the null of NV not contributing to the model in the presence of the other covariates being now stronger.

See ?brglm_fit and ?brglm_control for more examples and the other estimation methods for generalized linear models, including median bias reduction and maximum penalized likelihood with Jeffreys’ prior penalty. Also do not forget to take a look at the vignettes (vignette(package = "brglm2")) for details and more case studies.

Improved estimation of the exponential of regression parameters

See, also ?expo for a method to estimate the exponential of regression parameters, such as odds ratios from logistic regression models, while controlling for other covariate information. Estimation can be performed using maximum likelihood or various estimators with smaller asymptotic mean and median bias, that are also guaranteed to be finite, even if the corresponding maximum likelihood estimates are infinite. For example, modML is a logistic regression fit, so the exponential of each coefficient is an odds ratio while controlling for other covariates. To estimate those odds ratios using the correction* method for mean bias reduction (see ?expo for details) we do

expoRB <- expo(modML, type = "correction*")
expoRB
#> 
#> Call:
#> expo.glm(object = modML, type = "correction*")
#> 
#> Odds ratios 
#>              Estimate Std. Error     2.5 %  97.5 %
#> (Intercept) 20.671820  33.136501  0.893141 478.451
#> NV           8.496974   7.825239  1.397511  51.662
#> PI           0.965089   0.036795  0.895602   1.040
#> EH           0.056848   0.056344  0.008148   0.397
#> 
#> 
#> Type of estimator: correction* (explicit mean bias correction with a multiplicative adjustment)

The odds ratio between presence of neovasculation and high histology grade (HG) is estimated to be 8.497, while controlling for PI and EH. So, for each value of PI and EH, the estimated odds of high histology grade are about 8.5 times higher when neovasculation is present. An approximate 95% interval for the latter odds ratio is (1.4, 51.7) providing evidence of association between NV and HG while controlling for PI and EH. Note here that, the maximum likelihood estimate of the odds ratio is not as useful as the correction* estimate, because it is +∞ with an infinite standard error (see previous section).

MDYPL estimation and high-dimensionality corrections

Consider the Multiple Features dataset, which consists of digits (0-9) extracted from a collection of maps from a Dutch public utility. Two hundred 30 × 48 binary images per digit were available, which have then been used to extract feature sets. The digits are shown below using pixel averages in 2 x 3 windows.

data("MultipleFeatures", package = "brglm2")
par(mfrow = c(10, 20), mar = numeric(4) + 0.1)
for (c_digit in 0:9) {
    df <- subset(MultipleFeatures, digit == c_digit)
    df <- as.matrix(df[, paste("pix", 1:240, sep = ".")])
    for (inst in 1:20) {
        m <- matrix(df[inst, ], 15, 16)[, 16:1]
        image(m, col = grey.colors(7, 1, 0), xaxt = "n", yaxt = "n")
    }
}

We focus on the setting of Sterzinger and Kosmidis (2024, Section 8) on explaining the character shapes of the digit 7 in terms of 76 Fourier coefficients (fou features), which are computed to be rotationally invariant, and 64 Karhunen-Loève coefficients (kar features), using 1000 randomly selected digits. Depending on the font, the level of noise introduced during digitization, and the downscaling of the digits to binary images, difficulties may arise in discriminating instances of the digit 7 to instances of the digits 1 and 4. Also, if only rotation invariant features, like fou, are used difficulties may arise in discriminating instances of the digit 7 to instances of the digit 2.

The data is perfectly separated for both the model with only fou features, and the model with fou and kar features, and the maximized likelihood is zero for both models.

## Center the fou.* and kar.* features
vars <- grep("fou|kar", names(MultipleFeatures), value = TRUE)
train_id <- which(MultipleFeatures$training)
MultipleFeatures[train_id, vars] <- scale(MultipleFeatures[train_id, vars], scale = FALSE)
## Set up module formulas
full_fm <- formula(paste("I(digit == 7) ~", paste(vars, collapse = " + ")))
nest_vars <- grep("fou", vars, value = TRUE)
nest_fm <- formula(paste("I(digit == 7) ~", paste(nest_vars, collapse = " + ")))
## Fit the models using maximum likelihood
full_sep <- glm(full_fm, data = MultipleFeatures, family = binomial(), subset = training,
                method = detect_separation)
nest_sep <- update(full_sep, nest_fm)
full_sep$outcome
#> [1] TRUE
nest_sep$outcome
#> [1] TRUE

As a result, the likelihood ratio statistic comparing the two models will be trivially zero, regardless of any evidence against the hypothesis that the model with only fou features is an as good description of 7 as the model with both fou and kar features.

anova(update(nest_sep, method = glm.fit),
      update(full_sep, method = glm.fit))
#> Warning: glm.fit: algorithm did not converge
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Warning: glm.fit: algorithm did not converge
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#> Analysis of Deviance Table
#> 
#> Model 1: I(digit == 7) ~ fou.1 + fou.2 + fou.3 + fou.4 + fou.5 + fou.6 + 
#>     fou.7 + fou.8 + fou.9 + fou.10 + fou.11 + fou.12 + fou.13 + 
#>     fou.14 + fou.15 + fou.16 + fou.17 + fou.18 + fou.19 + fou.20 + 
#>     fou.21 + fou.22 + fou.23 + fou.24 + fou.25 + fou.26 + fou.27 + 
#>     fou.28 + fou.29 + fou.30 + fou.31 + fou.32 + fou.33 + fou.34 + 
#>     fou.35 + fou.36 + fou.37 + fou.38 + fou.39 + fou.40 + fou.41 + 
#>     fou.42 + fou.43 + fou.44 + fou.45 + fou.46 + fou.47 + fou.48 + 
#>     fou.49 + fou.50 + fou.51 + fou.52 + fou.53 + fou.54 + fou.55 + 
#>     fou.56 + fou.57 + fou.58 + fou.59 + fou.60 + fou.61 + fou.62 + 
#>     fou.63 + fou.64 + fou.65 + fou.66 + fou.67 + fou.68 + fou.69 + 
#>     fou.70 + fou.71 + fou.72 + fou.73 + fou.74 + fou.75 + fou.76
#> Model 2: I(digit == 7) ~ fou.1 + fou.2 + fou.3 + fou.4 + fou.5 + fou.6 + 
#>     fou.7 + fou.8 + fou.9 + fou.10 + fou.11 + fou.12 + fou.13 + 
#>     fou.14 + fou.15 + fou.16 + fou.17 + fou.18 + fou.19 + fou.20 + 
#>     fou.21 + fou.22 + fou.23 + fou.24 + fou.25 + fou.26 + fou.27 + 
#>     fou.28 + fou.29 + fou.30 + fou.31 + fou.32 + fou.33 + fou.34 + 
#>     fou.35 + fou.36 + fou.37 + fou.38 + fou.39 + fou.40 + fou.41 + 
#>     fou.42 + fou.43 + fou.44 + fou.45 + fou.46 + fou.47 + fou.48 + 
#>     fou.49 + fou.50 + fou.51 + fou.52 + fou.53 + fou.54 + fou.55 + 
#>     fou.56 + fou.57 + fou.58 + fou.59 + fou.60 + fou.61 + fou.62 + 
#>     fou.63 + fou.64 + fou.65 + fou.66 + fou.67 + fou.68 + fou.69 + 
#>     fou.70 + fou.71 + fou.72 + fou.73 + fou.74 + fou.75 + fou.76 + 
#>     kar.1 + kar.2 + kar.3 + kar.4 + kar.5 + kar.6 + kar.7 + kar.8 + 
#>     kar.9 + kar.10 + kar.11 + kar.12 + kar.13 + kar.14 + kar.15 + 
#>     kar.16 + kar.17 + kar.18 + kar.19 + kar.20 + kar.21 + kar.22 + 
#>     kar.23 + kar.24 + kar.25 + kar.26 + kar.27 + kar.28 + kar.29 + 
#>     kar.30 + kar.31 + kar.32 + kar.33 + kar.34 + kar.35 + kar.36 + 
#>     kar.37 + kar.38 + kar.39 + kar.40 + kar.41 + kar.42 + kar.43 + 
#>     kar.44 + kar.45 + kar.46 + kar.47 + kar.48 + kar.49 + kar.50 + 
#>     kar.51 + kar.52 + kar.53 + kar.54 + kar.55 + kar.56 + kar.57 + 
#>     kar.58 + kar.59 + kar.60 + kar.61 + kar.62 + kar.63 + kar.64
#>   Resid. Df Resid. Dev Df   Deviance Pr(>Chi)
#> 1       923 3.1661e-07                       
#> 2       859 1.6140e-08 64 3.0047e-07        1

Let’s fit the models using maximum Diaconis-Ylvisaker prior penalized likelihood (MDYPL) with a shrinkage parameter alpha in (0, 1), which always results in finite estimates; see ?brglm2::mdypl_fit. The corresponding penalized likelihood ratio test (see ?brglm2::plrtest and ?brglm2::summary.mdyplFit) results again in no evidence against the hypothesis.

full_m <- update(full_sep, method = mdypl_fit)
nest_m <- update(nest_sep, method = mdypl_fit, alpha = full_m$alpha)
plrtest(nest_m, full_m)
#> Analysis of Deviance Table
#> 
#> Model 1: I(digit == 7) ~ fou.1 + fou.2 + fou.3 + fou.4 + fou.5 + fou.6 + 
#>     fou.7 + fou.8 + fou.9 + fou.10 + fou.11 + fou.12 + fou.13 + 
#>     fou.14 + fou.15 + fou.16 + fou.17 + fou.18 + fou.19 + fou.20 + 
#>     fou.21 + fou.22 + fou.23 + fou.24 + fou.25 + fou.26 + fou.27 + 
#>     fou.28 + fou.29 + fou.30 + fou.31 + fou.32 + fou.33 + fou.34 + 
#>     fou.35 + fou.36 + fou.37 + fou.38 + fou.39 + fou.40 + fou.41 + 
#>     fou.42 + fou.43 + fou.44 + fou.45 + fou.46 + fou.47 + fou.48 + 
#>     fou.49 + fou.50 + fou.51 + fou.52 + fou.53 + fou.54 + fou.55 + 
#>     fou.56 + fou.57 + fou.58 + fou.59 + fou.60 + fou.61 + fou.62 + 
#>     fou.63 + fou.64 + fou.65 + fou.66 + fou.67 + fou.68 + fou.69 + 
#>     fou.70 + fou.71 + fou.72 + fou.73 + fou.74 + fou.75 + fou.76
#> Model 2: I(digit == 7) ~ fou.1 + fou.2 + fou.3 + fou.4 + fou.5 + fou.6 + 
#>     fou.7 + fou.8 + fou.9 + fou.10 + fou.11 + fou.12 + fou.13 + 
#>     fou.14 + fou.15 + fou.16 + fou.17 + fou.18 + fou.19 + fou.20 + 
#>     fou.21 + fou.22 + fou.23 + fou.24 + fou.25 + fou.26 + fou.27 + 
#>     fou.28 + fou.29 + fou.30 + fou.31 + fou.32 + fou.33 + fou.34 + 
#>     fou.35 + fou.36 + fou.37 + fou.38 + fou.39 + fou.40 + fou.41 + 
#>     fou.42 + fou.43 + fou.44 + fou.45 + fou.46 + fou.47 + fou.48 + 
#>     fou.49 + fou.50 + fou.51 + fou.52 + fou.53 + fou.54 + fou.55 + 
#>     fou.56 + fou.57 + fou.58 + fou.59 + fou.60 + fou.61 + fou.62 + 
#>     fou.63 + fou.64 + fou.65 + fou.66 + fou.67 + fou.68 + fou.69 + 
#>     fou.70 + fou.71 + fou.72 + fou.73 + fou.74 + fou.75 + fou.76 + 
#>     kar.1 + kar.2 + kar.3 + kar.4 + kar.5 + kar.6 + kar.7 + kar.8 + 
#>     kar.9 + kar.10 + kar.11 + kar.12 + kar.13 + kar.14 + kar.15 + 
#>     kar.16 + kar.17 + kar.18 + kar.19 + kar.20 + kar.21 + kar.22 + 
#>     kar.23 + kar.24 + kar.25 + kar.26 + kar.27 + kar.28 + kar.29 + 
#>     kar.30 + kar.31 + kar.32 + kar.33 + kar.34 + kar.35 + kar.36 + 
#>     kar.37 + kar.38 + kar.39 + kar.40 + kar.41 + kar.42 + kar.43 + 
#>     kar.44 + kar.45 + kar.46 + kar.47 + kar.48 + kar.49 + kar.50 + 
#>     kar.51 + kar.52 + kar.53 + kar.54 + kar.55 + kar.56 + kar.57 + 
#>     kar.58 + kar.59 + kar.60 + kar.61 + kar.62 + kar.63 + kar.64
#>   Resid. Df Resid. Dev Df Deviance Pr(>Chi)
#> 1       923     97.305                     
#> 2       859     32.945 64   64.359   0.4639

Nevertheless, full_m involves 141 parameters, which is relatively large compared to the 1000 available observations. The distribution of the penalized likelihood ratio statistic may be far from the asymptotic χ2 distribution that we expect under usual asymptotics.

In stark contrast to the evidence quantified by the previous tests, the high-dimensionality correction to the penalized likelihood ratio statistic under proportional asymptotics proposed in Sterzinger and Kosmidis (2024) results in strong evidence against the model with fou features only.

plrtest(nest_m, full_m, hd_correction = TRUE)
#> Analysis of Deviance Table
#> 
#> Model 1: I(digit == 7) ~ fou.1 + fou.2 + fou.3 + fou.4 + fou.5 + fou.6 + 
#>     fou.7 + fou.8 + fou.9 + fou.10 + fou.11 + fou.12 + fou.13 + 
#>     fou.14 + fou.15 + fou.16 + fou.17 + fou.18 + fou.19 + fou.20 + 
#>     fou.21 + fou.22 + fou.23 + fou.24 + fou.25 + fou.26 + fou.27 + 
#>     fou.28 + fou.29 + fou.30 + fou.31 + fou.32 + fou.33 + fou.34 + 
#>     fou.35 + fou.36 + fou.37 + fou.38 + fou.39 + fou.40 + fou.41 + 
#>     fou.42 + fou.43 + fou.44 + fou.45 + fou.46 + fou.47 + fou.48 + 
#>     fou.49 + fou.50 + fou.51 + fou.52 + fou.53 + fou.54 + fou.55 + 
#>     fou.56 + fou.57 + fou.58 + fou.59 + fou.60 + fou.61 + fou.62 + 
#>     fou.63 + fou.64 + fou.65 + fou.66 + fou.67 + fou.68 + fou.69 + 
#>     fou.70 + fou.71 + fou.72 + fou.73 + fou.74 + fou.75 + fou.76
#> Model 2: I(digit == 7) ~ fou.1 + fou.2 + fou.3 + fou.4 + fou.5 + fou.6 + 
#>     fou.7 + fou.8 + fou.9 + fou.10 + fou.11 + fou.12 + fou.13 + 
#>     fou.14 + fou.15 + fou.16 + fou.17 + fou.18 + fou.19 + fou.20 + 
#>     fou.21 + fou.22 + fou.23 + fou.24 + fou.25 + fou.26 + fou.27 + 
#>     fou.28 + fou.29 + fou.30 + fou.31 + fou.32 + fou.33 + fou.34 + 
#>     fou.35 + fou.36 + fou.37 + fou.38 + fou.39 + fou.40 + fou.41 + 
#>     fou.42 + fou.43 + fou.44 + fou.45 + fou.46 + fou.47 + fou.48 + 
#>     fou.49 + fou.50 + fou.51 + fou.52 + fou.53 + fou.54 + fou.55 + 
#>     fou.56 + fou.57 + fou.58 + fou.59 + fou.60 + fou.61 + fou.62 + 
#>     fou.63 + fou.64 + fou.65 + fou.66 + fou.67 + fou.68 + fou.69 + 
#>     fou.70 + fou.71 + fou.72 + fou.73 + fou.74 + fou.75 + fou.76 + 
#>     kar.1 + kar.2 + kar.3 + kar.4 + kar.5 + kar.6 + kar.7 + kar.8 + 
#>     kar.9 + kar.10 + kar.11 + kar.12 + kar.13 + kar.14 + kar.15 + 
#>     kar.16 + kar.17 + kar.18 + kar.19 + kar.20 + kar.21 + kar.22 + 
#>     kar.23 + kar.24 + kar.25 + kar.26 + kar.27 + kar.28 + kar.29 + 
#>     kar.30 + kar.31 + kar.32 + kar.33 + kar.34 + kar.35 + kar.36 + 
#>     kar.37 + kar.38 + kar.39 + kar.40 + kar.41 + kar.42 + kar.43 + 
#>     kar.44 + kar.45 + kar.46 + kar.47 + kar.48 + kar.49 + kar.50 + 
#>     kar.51 + kar.52 + kar.53 + kar.54 + kar.55 + kar.56 + kar.57 + 
#>     kar.58 + kar.59 + kar.60 + kar.61 + kar.62 + kar.63 + kar.64
#>   Resid. Df Resid. Dev Df Deviance  Pr(>Chi)    
#> 1       923     97.305                          
#> 2       859     32.945 64   173.34 5.095e-12 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> High-dimensionality correction applied with
#> Dimentionality parameter (kappa) = 0.14
#> Estimated signal strength (gamma) = 11.58
#> State evolution parameters (mu, b, sigma) = (0.4, 1.84, 2.21) with max(|funcs|) = 6.300466e-09

The estimates can be corrected in terms of aggregate bias using the summary() method.

summ_full_m <- summary(full_m, hd_correction = TRUE)

The correction proceeds by estimating the constant μ by which the estimates are divided in order to recover the asymptotic aggregate unbiasedness of the estimator. The figure below illustrates that the impact of the correction is to inflate the MDYPL estimates.

rescaled_coefs <- coef(summ_full_m)[-1, ]
acols <- hcl.colors(3, alpha = 0.2)
cols <- hcl.colors(3)
plot(coef(full_m)[-1], rescaled_coefs[, "Estimate"],
     xlim = c(-9, 9), ylim = c(-9, 9),
     xlab = "MDYPL estimates", ylab = "rescaled MDYPL estimates",
     pch = 21,
     bg = acols[grepl("kar", rownames(rescaled_coefs)) + 1],
     col = NULL)
legend(-9, 9, legend = c("fou", "kar"), pt.bg = cols[1:2], col = NA, pch = 21,
       title = "Features")
legend(-5.4, 9, legend = expression(1, 1/hat(mu)), lty = c(2, 1), col = "grey",
       title = "Slope")
abline(0, 1, col = "grey", lty = 2)
abline(0, 1/summ_full_m$se_parameters[1], col = "grey")

Estimation methods

The workhorse function in brglm2 is brglm_fit() (or equivalently brglmFit() if you like camel case), which, as we did in the example above, can be passed directly to the method argument of the glm() function. brglm_fit() implements a quasi Fisher scoring procedure, whose special cases result in a range of explicit and implicit bias reduction methods for generalized linear models for more details). Bias reduction for multinomial logistic regression (nominal responses) can be performed using the function brmultinom(), and for adjacent category models (ordinal responses) using the function bracl(). Both brmultinom() and bracl() rely on brglm_fit.

The classification of bias reduction methods into explicit and implicit is as given in Kosmidis (2014).

For logistic regression models, in particular, the mdypl_fit() function provides maximum Diaconis-Ylvisaker prior penalized likelihood estimation, and can again be passed directly to the method argument of the glm() function. The summary() method for mdyplFit objects, then allows for high-dimensional corrections of aggregate bias and of standard z-statistics under proportional asymptotics, and the plrtest() method allows for penalized likelihood ratio tests with and without high-dimensional corrections; see Sterzinger and Kosmidis (2024), the example above, and the help pages of the methods.

References and resources

brglm2 was presented by Ioannis Kosmidis at the useR! 2016 international conference at University of Stanford on 16 June 2016. The presentation was titled “Reduced-bias inference in generalized linear models”.

Motivation, details and discussion on the methods that brglm2 implements are provided in

Kosmidis, I, Kenne Pagui, E C, Sartori N. (2020). Mean and median bias reduction in generalized linear models. Statistics and Computing 30, 43–59.

The iteration vignette presents the iteration and give mathematical details for the bias-reducing adjustments to the score functions for generalized linear models.

Maximum Diaconis-Ylvisaker prior penalized likelihood and high-dimensionality corrections under proportional asymptotics are described in

Sterzinger P, Kosmidis I (2024). Diaconis-Ylvisaker prior penalized likelihood for p/n → κ ∈ (0, 1) logistic regression. arXiv:2311.07419v2.

Code of Conduct

Please note that the brglm2 project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.