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compare_partitions Compare cluster memberships among multiple partitions

Description

This function aims at computing pairwise comparisons for several partitions, usually on outputs
from netclu_, hclu_ or nhclu_ functions. It also provides the confusion matrix from pairwise
comparisons, so that the user can compute additional comparison metrics.

Usage

compare_partitions(
cluster_object,
sample_comparisons = NULL,
indices = c("rand", "jaccard"),
cor_frequency = FALSE,
store_pairwise_membership = TRUE,
store_confusion_matrix = TRUE

)

Arguments

cluster_object a bioregion.clusters object or a data.frame or a list of data.frame con-
taining multiple partitions. At least two partitions are required. If a list of
data.frame is provided, they should all have the same number of rows (i.e.,
same items in the clustering for all partitions).

sample_comparisons

NULL or a positive integer. Reduce computation time by sampling a number of
pairwise comparisons in cluster membership of items. Useful if the number of
items clustered is high. Suggested values 5000 or 10000.

indices NULL or character. Indices to compute for the pairwise comparison of parti-
tions. Current available metrics are "rand" and "jaccard"
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cor_frequency a boolean. If TRUE, then computes the correlation between each partition and the
total frequency of co-membership of items across all partitions. Useful to iden-
tify which partition(s) is(are) most representative of all the computed partitions.

store_pairwise_membership

a boolean. If TRUE, the pairwise membership of items is stored in the output
object.

store_confusion_matrix

a boolean. If TRUE, the confusion matrices of pairwise partition comparisons are
stored in the output object.

Details

This function proceeds in two main steps:

1. The first step is done within each partition. It will compare all pairs of items and docu-
ment if they are clustered together (TRUE) or separately (FALSE) in each partition. For ex-
ample, if site 1 and site 2 are clustered in the same cluster in partition 1, then the pair-
wise membership site1_site2 will be TRUE. The output of this first step is stored in the slot
pairwise_membership if store_pairwise_membership = TRUE.

2. The second step compares all pairs of partitions by analysing if their pairwise memberships
are similar or not. To do so, for each pair of partitions, the function computes a confusion
matrix with four elements:

• a: number of pairs of items grouped in partition 1 and in partition 2
• b: number of pairs of items grouped in partition 1 but not in partition 2
• c: number of pairs of items not grouped in partition 1 but grouped in partition 2
• d: number of pairs of items not grouped in both partition 1 & 2

The confusion matrix is stored in confusion_matrix if store_confusion_matrix = TRUE.

Based on the confusion matrices, we can compute a range of indices to indicate the agreement
among partitions. As of now, we have implemented:

• Rand index (a+ d)/(a+ b+ c+ d) The Rand index measures agreement among partitions by
accounting for both the pairs of sites that are grouped, but also the pairs of sites that are not
grouped.

• Jaccard index (a)/(a + b + c) The Jaccard index measures agreement among partitions by
only accounting for pairs of sites that are grouped - it is

These two metrics are complementary, because the Jaccard index will tell if partitions are similar
in their clustering structure, whereas the Rand index will tell if partitions are similar not only in the
pairs of items clustered together, but also in terms of the pairs of sites that are not clustered together.
For example, take two partitions which never group together the same pairs of sites. Their Jaccard
index will be 0, whereas the Rand index can be > 0 due to the sites that are not grouped together.

Additional indices can be manually computed by the users on the basis of the list of confusion
matrices.

In some cases, users may be interested in finding which of the partitions is most representative of
all partitions. To find it out, we can compare the pairwise membership of each partition with the
total frequency of pairwise membership across all partitions. This correlation can be requested with
cor_frequency = TRUE
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Value

A list with 4 to 7 elements:

• args: arguments provided by the user

• inputs: information on the input partitions, such as the number of items being clustered

• (facultative) pairwise_membership: only if store_pairwise_membership = TRUE. This el-
ement contains the pairwise memberships of all items for each partition, in the form of a
boolean matrix where TRUE means that two items are in the same cluster, and FALSE means
that two items are not in the same cluster

• freq_item_pw_membership: A numeric vector containing the number of times each pair of
items are clustered together. It corresponds to the sum of rows of the table in pairwise_membership

• (facultative) partition_freq_cor: only if cor_frequency = TRUE. A numeric vector indi-
cating the correlation between individual partitions and the total frequency of pairwise mem-
bership across all partitions. It corresponds to the correlation between individual columns in
pairwise_membership and freq_item_pw_membership

• (facultative) confusion_matrix: only if store_confusion_matrix = TRUE. A list contain-
ing all confusion matrices between each pair of partitions.

• partition_comparison: a data.frame containing the results of the comparison of parti-
tions, where the first column indicates which partitions are compared, and the next columns
correspond to the requested indices.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Maxime Lenormand (<maxime.lenormand@inrae.fr>)
and Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

partition_metrics

Examples

# A simple case with four partitions of four items
partitions <- data.frame(matrix(nr = 4, nc = 4,

c(1,2,1,1,1,2,2,1,2,1,3,1,2,1,4,2),
byrow = TRUE))

partitions
compare_partitions(partitions)

# Find out which partitions are most representative
compare_partitions(partitions,

cor_frequency = TRUE)
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cut_tree Cut a hierarchical tree

Description

This functions is designed to work on a hierarchical tree and cut it at user-selected heights. It
works on either outputs from hclu_hierarclust or hclust objects. It cuts the tree for the chosen
number(s) of clusters or selected height(s). It also includes a procedure to automatically return the
height of cut for the chosen number(s) of clusters.

Usage

cut_tree(
tree,
n_clust = NULL,
cut_height = NULL,
find_h = TRUE,
h_max = 1,
h_min = 0,
dynamic_tree_cut = FALSE,
dynamic_method = "tree",
dynamic_minClusterSize = 5,
dissimilarity = NULL,
...

)

Arguments

tree a bioregion.hierar.tree or a hclust object
n_clust an integer or a vector of integers indicating the number of clusters to be obtained

from the hierarchical tree, or the output from partition_metrics(). Should
not be used at the same time as cut_height

cut_height a numeric vector indicating the height(s) at which the tree should be cut. Should
not be used at the same time as n_clust or optim_method

find_h a boolean indicating if the height of cut should be found for the requested
n_clust

h_max a numeric indicating the maximum possible tree height for finding the height of
cut when find_h = TRUE

h_min a numeric indicating the minimum possible height in the tree for finding the
height of cut when find_h = TRUE

dynamic_tree_cut

a boolean indicating if the dynamic tree cut method should be used, in which
case n_clust & cut_height are ignored

dynamic_method a character vector indicating the method to be used to dynamically cut the tree:
either "tree" (clusters searched only in the tree) or "hybrid" (clusters searched
on both tree and dissimilarity matrix)
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dynamic_minClusterSize

an integer indicating the minimum cluster size to use in the dynamic tree cut
method (see dynamicTreeCut::cutreeDynamic())

dissimilarity only useful if dynamic_method = "hybrid". Provide here the dissimilarity data.frame
used to build the tree

... further arguments to be passed to dynamicTreeCut::cutreeDynamic() to cus-
tomize the dynamic tree cut method.

Details

The function can cut the tree with two main methods. First, it can cut the entire tree at the same
height (either specified by cut_height or automatically defined for the chosen n_clust). Second,
it can use the dynamic tree cut method (Langfelder et al. 2008), in which case clusters are detected
with an adaptive method based on the shape of branches in the tree (thus cuts happen at multiple
heights depending on cluster positions in the tree).

The dynamic tree cut method has two variants.

• The tree-based only variant (dynamic_method = "tree") is a top-down approach which relies
only on the tree and follows the order of clustered objects on it

• The hybrid variant (dynamic_method = "hybrid") is a bottom-up approach which relies on
both the tree and the dissimilarity matrix to build clusters on the basis of dissimilarity infor-
mation among sites. This method is useful to detect outlying members in each cluster.

Value

If tree is an output from hclu_hierarclust(), then the same object is returned with content
updated (i.e., args and clusters). If tree is a hclust object, then a data.frame containing the
clusters is returned.

Note

The argument find_h is ignored if dynamic_tree_cut = TRUE, because heights of cut cannot be
estimated in this case.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>), Maxime Lenormand (<maxime.lenormand@inrae.fr>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Langfelder P, Zhang B, Horvath S (2008). “Defining clusters from a hierarchical cluster tree: the
Dynamic Tree Cut package for R.” BIOINFORMATICS, 24(5), 719–720.

See Also

hclu_hierarclust
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Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site", 1:20)
colnames(comat) <- paste0("Species", 1:25)

simil <- similarity(comat, metric = "all")
dissimilarity <- similarity_to_dissimilarity(simil)

# User-defined number of clusters
tree1 <- hclu_hierarclust(dissimilarity, n_clust = 5)
tree2 <- cut_tree(tree1, cut_height = .05)
tree3 <- cut_tree(tree1, n_clust = c(3, 5, 10))
tree4 <- cut_tree(tree1, cut_height = c(.05, .1, .15, .2, .25))
tree5 <- cut_tree(tree1, n_clust = c(3, 5, 10), find_h = FALSE)

hclust_tree <- tree2$algorithm$final.tree
clusters_2 <- cut_tree(hclust_tree, n_clust = 10)

cluster_dynamic <- cut_tree(tree1, dynamic_tree_cut = TRUE,
dissimilarity = dissimilarity)

dissimilarity Compute dissimilarity metrics (beta-diversity) between sites based on
species composition

Description

This function creates a data.frame where each row provides one or several dissimilarity metric(s)
between each pair of sites from a co-occurrence matrix with sites as rows and species as columns.

Usage

dissimilarity(comat, metric = "Simpson", formula = NULL, method = "prodmat")

Arguments

comat a co-occurrence matrix with sites as rows and species as columns.
metric a vector of string(s) indicating which metrics to chose (see Details). Available

options are abc, ABC, Jaccard, Jaccardturn, Sorensen, Simpson, Bray, Brayturn
or Euclidean.
If "all" is specified, then all metrics will be calculated. Can be set to NULL if
formula is used.

formula a vector of string(s) with your own formula based on the a, b, c, A, B, and C
quantities (see Details). formula is set to NULL by default.

method a string indicating what method should be used to compute abc (see Details).
method = "prodmat" by default is more efficient but can be greedy in memory
and method="loops" is less efficient but less greedy in memory.
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Details

With a the number of species shared by a pair of sites, b species only present in the first site and c
species only present in the second site.

Jaccard = (b+ c)/(a+ b+ c)

Jaccardturn = 2min(b, c)/(a+ 2min(b, c))(Baselga 2012)

Sorensen = (b+ c)/(2a+ b+ c)

Simpson = min(b, c)/(a+min(b, c))

If abundances data are available, Bray-Curtis and its turnover component can also be computed with
the following equation:

Bray = (B + C)/(2A+B + C)

Brayturn = min(B,C)/(A+min(B,C)) (Baselga 2013)

with A the sum of the lesser values for common species shared by a pair of sites. B and C are the
total number of specimens counted at both sites minus A.

formula can be used to compute customized metrics with the terms a, b, c, A, B, and C. For ex-
ample formula = c("(b + c) / (a + b + c)", "(B + C) / (2*A + B + C)") will compute the Jaccard
and Bray-Curtis dissimilarity metrics, respectively.

Euclidean computes the Euclidean distance between each pair of sites.

Value

A data.frame with additional class bioregion.pairwise.metric, providing one or several dis-
similarity metric(s) between each pair of sites. The two first columns represent each pair of sites.
One column per dissimilarity metric provided in metric and formula except for the metric abc and
ABC that are stored in three columns (one for each letter).

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Baselga A (2012). “The Relationship between Species Replacement, Dissimilarity Derived from
Nestedness, and Nestedness.” Global Ecology and Biogeography, 21(12), 1223–1232.

Baselga A (2013). “Separating the two components of abundance-based dissimilarity: balanced
changes in abundance vs. abundance gradients.” Methods in Ecology and Evolution, 4(6), 552–
557.

See Also

similarity() dissimilarity_to_similarity similarity_to_dissimilarity
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Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

dissim <- dissimilarity(comat,
metric = c("abc", "ABC", "Simpson", "Brayturn"))

dissim <- dissimilarity(comat, metric = "all",
formula = "1 - (b + c) / (a + b + c)")

dissimilarity_to_similarity

Convert dissimilarity metrics to similarity metrics

Description

This function converts a data.frame of dissimilarity metrics (beta diversity) between sites to simi-
larity metrics.

Usage

dissimilarity_to_similarity(dissimilarity, include_formula = TRUE)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity().
include_formula

a boolean indicating if the metrics based on your own formula should be con-
verted (see Details). This argument is set to TRUE by default.

Value

A data.frame with additional class bioregion.pairwise.metric, providing similarity metric(s)
between each pair of sites based on a dissimilarity object.

Note

The behavior of this function changes depending on column names. Columns Site1 and Site2 are
copied identically. If there are columns called a, b, c, A, B, C they will also be copied identically.
If there are columns based on your own formula (argument formula in dissimilarity()) or not
in the original list of dissimilarity metrics (argument metrics in dissimilarity()) and if the
argument include_formula is set to FALSE, they will also be copied identically. Otherwise there
are going to be converted like they other columns (default behavior).

If a column is called Euclidean, the similarity will be calculated based on the following formula:
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Euclideansimilarity = 1/(1− Euclideandistance)

Otherwise, all other columns will be transformed into dissimilarity with the following formula:

similarity = 1− dissimilarity

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Boris Leroy (<leroy.boris@gmail.com>)
and Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

similarity_to_dissimilarity() similarity() dissimilarity()

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

dissimil <- dissimilarity(comat, metric = "all")
dissimil

similarity <- dissimilarity_to_similarity(dissimil)
similarity

find_optimal_n Search for an optimal number of clusters in a list of partitions

Description

This function aims at optimizing one or several criteria on a set of ordered partitions. It is usually
applied to find one (or several) optimal number(s) of clusters on, for example, a hierarchical tree
to cut, or a range of partitions obtained from k-means or PAM. Users are advised to be careful if
applied in other cases (e.g., partitions which are not ordered in an increasing or decreasing sequence,
or partitions which are not related to each other).

Usage

find_optimal_n(
partitions,
metrics_to_use = "all",
criterion = "elbow",
step_quantile = 0.99,
step_levels = NULL,
step_round_above = TRUE,
metric_cutoffs = c(0.5, 0.75, 0.9, 0.95, 0.99, 0.999),
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n_breakpoints = 1,
plot = TRUE

)

Arguments

partitions a bioregion.partition.metrics object (output from partition_metrics()
or a data.frame with the first two columns named "K" (partition name) and
"n_clusters" (number of clusters) and the following columns containing evalua-
tion metrics (numeric values)

metrics_to_use character string or vector of character strings indicating upon which metric(s) in
partitions the optimal number of clusters should be calculated. Defaults to
"all" which means all metrics available in partitions will be used

criterion character string indicating the criterion to be used to identify optimal number(s)
of clusters. Available methods currently include "elbow", "increasing_step",
"decreasing_step", "cutoff", "breakpoints", "min" or "max". Default is
"elbow". See details.

step_quantile if "increasing_step" or "decreasing_step", specify here the quantile of
differences between two consecutive k to be used as the cutoff to identify the
most important steps in eval_metric

step_levels if "increasing_step" or "decreasing_step", specify here the number of
largest steps to keep as cutoffs.

step_round_above

a boolean indicating if the optimal number of clusters should be picked above
or below the identified steps. Indeed, each step will correspond to a sudden in-
crease or decrease between partition X & partition X+1: should the optimal par-
tition be X+1 (step_round_above = TRUE) or X (step_round_above = FALSE?
Defaults to TRUE

metric_cutoffs if criterion = "cutoff", specify here the cutoffs of eval_metric at which the
number of clusters should be extracted

n_breakpoints specify here the number of breakpoints to look for in the curve. Defaults to 1

plot a boolean indicating if a plot of the first eval_metric should be drawn with the
identified optimal numbers of cutoffs

Details

This function explores the relationship evaluation metric ~ number of clusters, and a criterion is
applied to search an optimal number of clusters.

Please read the note section about the following criteria.
Foreword:

Here we implemented a set of criteria commonly found in the literature or recommended in the
bioregionalisation literature. Nevertheless, we also advocate to move beyond the "Search one op-
timal number of clusters" paradigm, and consider investigating "multiple optimal numbers of clus-
ters". Indeed, using only one optimal number of clusters may simplify the natural complexity of
biological datasets, and, for example, ignore the often hierarchical / nested nature of bioregionali-
sations. Using multiple partitions likely avoids this oversimplification bias and may convey more
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information. See, for example, the reanalysis of Holt et al. (2013) by (Ficetola et al. 2017), where
they used deep, intermediate and shallow cuts.

Following this rationale, several of the criteria implemented here can/will return multiple "optimal"
numbers of clusters, depending on user choices.

Criteria to find optimal number(s) of clusters

• elbow: This method consists in finding one elbow in the evaluation metric curve, as is com-
monly done in clustering analyses. The idea is to approximate the number of clusters at which
the evaluation metric no longer increments.It is based on a fast method finding the maximum
distance between the curve and a straight line linking the minimum and maximum number
of points. The code we use here is based on code written by Esben Eickhardt available here
https://stackoverflow.com/questions/2018178/finding-the-best-trade-off-point-on-a-curve/
42810075#42810075. The code has been modified to work on both increasing and decreasing
evaluation metrics.

• increasing_step or decreasing_step: This method consists in identifying clusters at the
most important changes, or steps, in the evaluation metric. The objective can be to either
look for largest increases (increasing_step) or largest decreases decreasing_step. Steps
are calculated based on the pairwise differences between partitions. Therefore, this is relative
to the distribution of differences in the evaluation metric over the tested partitions. Specify
step_quantile as the quantile cutoff above which steps will be selected as most important
(by default, 0.99, i.e. the largest 1\ selected).Alternatively, you can also choose to specify
the number of top steps to keep, e.g. to keep the largest three steps, specify step_level = 3.
Basically this method will emphasize the most important changes in the evaluation metric as
a first approximation of where important cuts can be chosen.
**Please note that you should choose between increasing_step and decreasing_step de-
pending on the nature of your evaluation metrics. For example, for metrics that are monotonously
decreasing (e.g., endemism metrics "avg_endemism" & "tot_endemism") with the number of
clusters should n_clusters, you should choose decreasing_step. On the contrary, for met-
rics that are monotonously increasing with the number of clusters (e.g., "pc_distance"), you
should choose increasing_step. **

• cutoffs: This method consists in specifying the cutoff value(s) in the evaluation metric from
which the number(s) of clusters should be derived. This is the method used by (Holt et al.
2013). Note, however, that the cut-offs suggested by Holt et al. (0.9, 0.95, 0.99, 0.999) may
be only relevant at very large spatial scales, and lower cut-offs should be considered at finer
spatial scales.

• breakpoints: This method consists in finding break points in the curve using a segmented
regression. Users have to specify the number of expected break points in n_breakpoints
(defaults to 1). Note that since this method relies on a regression model, it should probably
not be applied with a low number of partitions.

• min & max: Picks the optimal partition(s) respectively at the minimum or maximum value of
the evaluation metric.

Value

a list of class bioregion.optimal.n with three elements:

• args: input arguments

https://stackoverflow.com/questions/2018178/finding-the-best-trade-off-point-on-a-curve/42810075#42810075
https://stackoverflow.com/questions/2018178/finding-the-best-trade-off-point-on-a-curve/42810075#42810075
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• evaluation_df: the input evaluation data.frame appended with boolean columns identifying
the optimal numbers of clusters

• optimal_nb_clusters: a list containing the optimal number(s) of cluster(s) for each metric
specified in "metrics_to_use", based on the chosen criterion

• plot: if requested, the plot will be stored in this slot

Note

Please note that finding the optimal number of clusters is a procedure which normally requires deci-
sions from the users, and as such can hardly be fully automatized. Users are strongly advised to read
the references indicated below to look for guidance on how to choose their optimal number(s) of
clusters. Consider the "optimal" numbers of clusters returned by this function as first approximation
of the best numbers for your bioregionalisation.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Maxime Lenormand (<maxime.lenormand@inrae.fr>)
and Pierre Denelle (<pierre.denelle@gmail.com>)

References

Castro-Insua A, Gómez-Rodríguez C, Baselga A (2018). “Dissimilarity measures affected by rich-
ness differences yield biased delimitations of biogeographic realms.” Nature Communications, 9(1),
9–11.

Ficetola GF, Mazel F, Thuiller W (2017). “Global determinants of zoogeographical boundaries.”
Nature Ecology & Evolution, 1, 0089.

Holt BG, Lessard J, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P, Graham CH,
Graves GR, Jønsson Ka, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C (2013). “An
update of Wallace’s zoogeographic regions of the world.” Science, 339(6115), 74–78.

Kreft H, Jetz W (2010). “A framework for delineating biogeographical regions based on species
distributions.” Journal of Biogeography, 37, 2029–2053.

Langfelder P, Zhang B, Horvath S (2008). “Defining clusters from a hierarchical cluster tree: the
Dynamic Tree Cut package for R.” BIOINFORMATICS, 24(5), 719–720.

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

comnet <- mat_to_net(comat)

dissim <- dissimilarity(comat, metric = "all")

# User-defined number of clusters
tree1 <- hclu_hierarclust(dissim,

n_clust = 2:15,
index = "Simpson")
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tree1

a <- partition_metrics(tree1,
dissimilarity = dissim,
net = comnet,
species_col = "Node2",
site_col = "Node1",
eval_metric = c("tot_endemism",

"avg_endemism",
"pc_distance",
"anosim"))

find_optimal_n(a)
find_optimal_n(a, criterion = "increasing_step")
find_optimal_n(a, criterion = "decreasing_step")
find_optimal_n(a, criterion = "decreasing_step",

step_levels = 3)
find_optimal_n(a, criterion = "decreasing_step",

step_quantile = .9)
find_optimal_n(a, criterion = "decreasing_step",

step_levels = 3)
find_optimal_n(a, criterion = "decreasing_step",

step_levels = 3)
find_optimal_n(a, criterion = "breakpoints")

fishdf Spatial distribution of fish in Europe (data.frame)

Description

A dataset containing the abundance of 195 species in 338 sites.

Usage

fishdf

Format

A data.frame with 2,703 rows and 3 columns:

Site Unique site identifier (corresponding to the field ID of fishsf).

Species Unique species identifier.

Abundance Species abundance
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fishmat Spatial distribution of fish in Europe (co-occurrence matrix)

Description

A dataset containing the abundance of each of the 195 species in each of the 338 sites.

Usage

fishmat

Format

A co-occurrence matrix with sites as rows and species as columns. Each element of the matrix
represents the abundance of the species in the site.

fishsf Spatial distribution of fish in Europe

Description

A dataset containing the geometry of the 338 sites.

Usage

fishsf

Format

A

ID Unique site identifier.

geometry Geometry of the site.
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hclu_diana Divisive hierarchical clustering based on dissimilarity or beta-
diversity

Description

This function computes a divisive hierarchical clustering from a dissimilarity (beta-diversity) data.frame,
calculates the cophenetic correlation coefficient, and can get clusters from the tree if requested by
the user. The function implements randomization of the dissimilarity matrix to generate the tree,
with a selection method based on the optimal cophenetic correlation coefficient. Typically, the dis-
similarity data.frame is a bioregion.pairwise.metric object obtained by running similarity
or similarity and then similarity_to_dissimilarity.

Usage

hclu_diana(
dissimilarity,
index = names(dissimilarity)[3],
n_clust = NULL,
cut_height = NULL,
find_h = TRUE,
h_max = 1,
h_min = 0

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

n_clust an integer or a vector of integers indicating the number of clusters to be obtained
from the hierarchical tree, or the output from partition_metrics. Should not be
used at the same time as cut_height.

cut_height a numeric vector indicating the height(s) at which the tree should be cut. Should
not be used at the same time as n_clust.

find_h a boolean indicating if the height of cut should be found for the requested
n_clust.

h_max a numeric indicating the maximum possible tree height for the chosen index.

h_min a numeric indicating the minimum possible height in the tree for the chosen
index.
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Details

Chapter 6 of Kaufman and Rousseeuw (1990) fully details the functioning of the diana algorithm.

To find an optimal number of clusters, see partition_metrics()

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

#’

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>), Boris Leroy (<leroy.boris@gmail.com>) and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Kaufman L, Rousseeuw PJ (2009). “Finding groups in data: An introduction to cluster analysis.”
In & Sons. JW (ed.), Finding groups in data: An introduction to cluster analysis..

See Also

cut_tree

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

data("fishmat")
fishdissim <- dissimilarity(fishmat)
fish_diana <- hclu_diana(fishdissim, index = "Simpson")
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hclu_hierarclust Hierarchical clustering based on dissimilarity or beta-diversity

Description

This function generates a hierarchical tree from a dissimilarity (beta-diversity) data.frame, calcu-
lates the cophenetic correlation coefficient, and can get clusters from the tree if requested by the
user. The function implements randomization of the dissimilarity matrix to generate the tree, with
a selection method based on the optimal cophenetic correlation coefficient. Typically, the dissim-
ilarity data.frame is a bioregion.pairwise.metric object obtained by running similarity or
similarity and then similarity_to_dissimilarity.

Usage

hclu_hierarclust(
dissimilarity,
index = names(dissimilarity)[3],
method = "average",
randomize = TRUE,
n_runs = 30,
keep_trials = FALSE,
optimal_tree_method = "best",
n_clust = NULL,
cut_height = NULL,
find_h = TRUE,
h_max = 1,
h_min = 0

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

method name of the hierarchical classification method, as in fastcluster::hclust(). Should
be one of "ward.D", "ward.D2", "single", "complete", "average" (= UP-
GMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (=
UPGMC).

randomize a boolean indicating if the dissimilarity matrix should be randomized, to account
for the order of sites in the dissimilarity matrix.

n_runs number of trials to randomize the dissimilarity matrix.

keep_trials a boolean indicating if all random trial results. should be stored in the output
object (set to FALSE to save space if your dissimilarity object is large).
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optimal_tree_method

a character vector indicating how the final tree should be obtained from all tri-
als. The only option currently is "best", which means the tree with the best
cophenetic correlation coefficient will be chosen.

n_clust an integer or a vector of integers indicating the number of clusters to be obtained
from the hierarchical tree, or the output from partition_metrics. Should not be
used at the same time as cut_height.

cut_height a numeric vector indicating the height(s) at which the tree should be cut. Should
not be used at the same time as n_clust.

find_h a boolean indicating if the height of cut should be found for the requested
n_clust.

h_max a numeric indicating the maximum possible tree height for the chosen index.

h_min a numeric indicating the minimum possible height in the tree for the chosen
index.

Details

The default method for the hierarchical tree is "average", i.e. UPGMA as it has been recommended
as the best method to generate a tree from beta diversity dissimilarity (Kreft and Jetz 2010)

Clusters can be obtained by two methods:

• Specifying a desired number of clusters in n_clust

• Specifying one or several heights of cut in cut_height

To find an optimal number of clusters, see partition_metrics()

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

In the algorithm slot, users can find the following elements:

• trials: a list containing all randomization trials. Each trial contains the dissimilarity ma-
trix, with site order randomized, the associated tree and the cophenetic correlation coefficient
(Spearman) for that tree

• final.tree: a hclust object containing the final hierarchical tree to be used

• final.tree.coph.cor: the cophenetic correlation coefficient between the initial dissimilar-
ity matrix and final.tree
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Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Pierre Denelle (<pierre.denelle@gmail.com>) and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Kreft H, Jetz W (2010). “A framework for delineating biogeographical regions based on species
distributions.” Journal of Biogeography, 37, 2029–2053.

See Also

cut_tree

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

# User-defined number of clusters
tree1 <- hclu_hierarclust(dissim, n_clust = 5)
tree1
plot(tree1)
str(tree1)
tree1$clusters

# User-defined height cut
# Only one height
tree2 <- hclu_hierarclust(dissim, cut_height = .05)
tree2
tree2$clusters

# Multiple heights
tree3 <- hclu_hierarclust(dissim, cut_height = c(.05, .15, .25))

tree3$clusters # Mind the order of height cuts: from deep to shallow cuts
# Info on each partition can be found in table cluster_info
tree3$cluster_info
plot(tree3)

# Recut the tree afterwards
tree3.1 <- cut_tree(tree3, n = 5)

tree4 <- hclu_hierarclust(dissim, n_clust = 1:19)
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hclu_optics OPTICS hierarchical clustering algorithm

Description

This function performs semi-hierarchical clustering on the basis of dissimilarity with the OPTICS
algorithm (Ordering Points To Identify the Clustering Structure)

Usage

hclu_optics(
dissimilarity,
index = names(dissimilarity)[3],
minPts = NULL,
eps = NULL,
xi = 0.05,
minimum = FALSE,
show_hierarchy = FALSE,
...

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

minPts a numeric value specifying the minPts argument of dbscan::dbscan()). minPts
is the minimum number of points to form a dense region. By default, it is set to
the natural logarithm of the number of sites in dissimilarity.

eps a numeric value specifying the eps argument of dbscan::optics()). It is the upper
limit of the size of the epsilon neighborhood. Limiting the neighborhood size
improves performance and has no or very little impact on the ordering as long
as it is not set too low. If not specified (default behavior), the largest minPts-
distance in the data set is used which gives the same result as infinity.

xi a numeric value specifying the steepness threshold to identify clusters hierar-
chically using the Xi method (see dbscan::optics())

minimum a boolean specifying if the hierarchy should be pruned out from the output
to only keep clusters at the "minimal" level, i.e. only leaf / non-overlapping
clusters. If TRUE, then argument show_hierarchy should be FALSE

show_hierarchy a boolean specifying if the hierarchy of clusters should be included in the out-
put. By default, the hierarchy is not visible in the clusters obtained from OP-
TICS - it can only be visualized by visualising the plot of the OPTICS object. If
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show_hierarchy = TRUE, then the output cluster data.frame will contain addi-
tional columns showing the hierarchy of clusters.

... you can add here further arguments to be passed to optics() (see dbscan::optics())

Details

The optics (Ordering points to identify the clustering structure) is a semi-hierarchical clustering al-
gorithm which orders the points in the dataset such that points which are closest become neighbors,
and calculates a reachability distance for each point. Then, clusters can be extracted in a hierarchical
manner from this reachability distance, by identifying clusters depending on changes in the relative
cluster density. The reachability plot should be explored to understand the clusters and their hier-
archical nature, by running plot on the output of the function: plot(object$algorithm$optics).
We recommend reading (Hahsler et al. 2019) to grasp the algorithm, how it works, and what the
clusters mean.

To extract the clusters, we use the dbscan::extractXi() function which is based on the steepness of
the reachability plot (see dbscan::optics())

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Pierre Denelle (<pierre.denelle@gmail.com>) and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Hahsler M, Piekenbrock M, Doran D (2019). “Dbscan: Fast density-based clustering with R.”
Journal of Statistical Software, 91(1). ISSN 15487660.

See Also

nhclu_dbscan

Examples

dissim <- dissimilarity(fishmat, metric = "all")

clust1 <- hclu_optics(dissim, index = "Simpson")
clust1
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# Visualize the optics plot (the hierarchy of clusters is illustrated at the
# bottom)
plot(clust1$algorithm$optics)

# Extract the hierarchy of clusters
clust1 <- hclu_optics(dissim, index = "Simpson", show_hierarchy = TRUE)
clust1

install_binaries Download, unzip, check permission and test the bioregion’s binary
files

Description

This function downloads and unzips the ’bin’ folder needed to run some functions of bioregion. It
also checks if the files have the permissions to be executed as programs. It finally tests if the binary
files are running properly.

Usage

install_binaries(
binpath = "tempdir",
infomap_version = c("2.1.0", "2.6.0", "2.7.1")

)

Arguments

binpath a character indicating the path to the folder that will host the ’bin’ folder con-
taining the binary files (see Details).

infomap_version

a character vector indicating the Infomap version(s) to install.

Details

By default, the binary files are installed in R’s temporary directory (binpath = "tempdir"). In this
case the bin folder will be automatically removed at the end of the R session. Alternatively, the
binary files can be installed in the bioregion’s package folder (binpath = "pkgfolder"). Finally, a
path to a folder of your choice can be chosen.

In any case, PLEASE MAKE SURE to update the binpath accordingly in netclu_infomap,
netclu_louvain and netclu_oslom).

Value

No return value

Note

Only the Infomap version 2.1.0, 2.6.0 and 2.7.1 are available for now.
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Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Boris Leroy (<leroy.boris@gmail.com>)
and Pierre Denelle (<pierre.denelle@gmail.com>)

map_clusters Create a map of bioregions

Description

This plot function can be used to visualise bioregions based on a bioregion.clusters object combined
with a geometry (sf objects).

Usage

map_clusters(clusters, geometry, write_clusters = FALSE, plot = TRUE, ...)

Arguments

clusters an object of class bioregion.clusters or a data.frame. If a data.frame is
used, the first column should represent the sites’ ID, and the next column(s) the
clusters.

geometry a spatial object that can be handled by the sf package. The first attribute should
correspond to the sites’ ID (see Details).

write_clusters a boolean indicating if the clusters should be added in geometry.

plot a boolean indicating if the plot should be drawn.

... further arguments to be passed to sf::plot()

Details

The clusters and geometry site IDs should correspond. They should have the same type (i.e.
character is cluster is a bioregion.clusters object) and the site of clusters should be included
in the sites of geometry.

Value

One or several maps of bioregions if plot = TRUE and the geometry with additional clusters’ at-
tributes if write_clusters = TRUE.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Boris Leroy (<leroy.boris@gmail.com>)
and Pierre Denelle (<pierre.denelle@gmail.com>)
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Examples

data(fishmat)
data(fishsf)

net <- similarity(fishmat, metric = "Simpson")
clu <- netclu_greedy(net)
map <- map_clusters(clu, fishsf, write_clusters = TRUE, plot = FALSE)

mat_to_net Create a data.frame from a contingency table

Description

This function creates a two- or three-columns data.frame where each row represents the interac-
tion between two nodes (site and species for example) and an optional third column indicating the
weight of the interaction (if weight = TRUE) from a contingency table (sites as rows and species as
columns for example).

Usage

mat_to_net(
mat,
weight = FALSE,
remove_zeroes = TRUE,
include_diag = TRUE,
include_lower = TRUE

)

Arguments

mat a contingency table (i.e. matrix).

weight a boolean indicating if the value are weights.

remove_zeroes a boolean determining whether interactions with weight equal to 0 should be
removed from the output.

include_diag a boolean indicating whether the diagonal should be included in the output.
Only for squared matrix.

include_lower a boolean indicating whether the lower triangular matrix should be included in
the output. Only for squared matrix.

Value

A data.frame where each row represents the interaction between two nodes and an optional third
column indicating the weight of the interaction.
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Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

See Also

net_to_mat

Examples

mat <- matrix(sample(1000, 50), 5, 10)
rownames(mat) <- paste0("Site", 1:5)
colnames(mat) <- paste0("Species", 1:10)

net <- mat_to_net(mat, weight = TRUE)

netclu_beckett Community structure detection in weighted bipartite network via mod-
ularity optimization

Description

This function takes a bipartite weighted graph and computes modules by applying Newman’s mod-
ularity measure in a bipartite weighted version to it.

Usage

netclu_beckett(
net,
weight = TRUE,
index = names(net)[3],
site_col = 1,
species_col = 2,
return_node_type = "both",
forceLPA = FALSE,
algorithm_in_output = TRUE

)

Arguments

net a data.frame representing a bipartite network with the two first columns as
undirected links between pair of nodes and and the next column(s) are the weight
of the links.

weight a boolean indicating if the weights should be considered if there are more than
two columns (see Note).
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index name or number of the column to use as weight. By default, the third column
name of net is used.

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

forceLPA a boolean indicating if the even faster pure LPA-algorithm of Beckett should be
used? DIRT-LPA, the default, is less likely to get trapped in a local minimum,
but is slightly slower. Defaults to FALSE.

algorithm_in_output

a boolean indicating if the original output of computeModules should be re-
turned in the output (see Value). Default to TRUE.

Details

This function is based on the modularity optimization algorithm provided by Stephen Beckett
(Beckett 2016) as implemented in the bipartite package (computeModules).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an object of class "mod-
uleWeb", output of computeModules.

Note

Beckett has been designed to deal with weighted bipartite networks. Note that if weight = FALSE,
a weight of 1 will be assigned to each pair of nodes. Do not forget to indicate which of the first two
columns is dedicated to the site nodes (i.e. primary nodes) and species nodes (i.e. feature nodes)
using the arguments site_col and species_col. The type of nodes returned in the output can be
chosen with the argument return_node_type equal to "both" to keep both types of nodes,"sites"
to preserve only the sites nodes and "species" to preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

https://cran.r-project.org/package=bipartite
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References

Beckett SJ (2016). “Improved community detection in weighted bipartite networks.” Royal Society
Open Science, 3(1), 140536.

See Also

netclu_infomap, netclu_oslom

Examples

net <- data.frame(
Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
Species = c("a", "b", "a", "c", "d", "b", "d"),
Weight = c(10, 100, 1, 20, 50, 10, 20))

com <- netclu_beckett(net)

netclu_greedy Community structure detection via greedy optimization of modularity

Description

This function finds communities in a (un)weighted undirected network via greedy optimization of
modularity.

Usage

netclu_greedy(
net,
weight = TRUE,
index = names(net)[3],
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.
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index name or number of the column to use as weight. By default, the third column
name of net is used.

bipartite a boolean indicating if the network is bipartite (see Details).

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

a boolean indicating if the original output of communities should be returned
in the output (see Value).

Details

This function is based on the fast greedy modularity optimization algorithm (Clauset et al. 2004) as
implemented in the igraph package (cluster_fast_greedy).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an "communities" object,
output of cluster_fast_greedy.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "sites" to preserve only the sites nodes and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

https://cran.r-project.org/package=igraph
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References

Clauset A, Newman MEJ, Moore C (2004). “Finding community structure in very large networks.”
Phys. Rev. E, 70, 066111.

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_greedy(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_greedy(net_bip, bipartite = TRUE)

netclu_infomap Infomap community finding

Description

This function finds communities in a (un)weighted (un)directed network based on the Infomap
algorithm (https://github.com/mapequation/infomap).

Usage

netclu_infomap(
net,
weight = TRUE,
index = names(net)[3],
nbmod = 0,
markovtime = 1,
seed = 0,
numtrials = 1,
twolevel = FALSE,
show_hierarchy = FALSE,
directed = FALSE,
bipartite_version = FALSE,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
version = "2.7.1",
binpath = "tempdir",
path_temp = "infomap_temp",
delete_temp = TRUE

)

https://github.com/mapequation/infomap
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Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

nbmod penalize solutions the more they differ from this number (0 by default for no
preferred number of modules).

markovtime scales link flow to change the cost of moving between modules, higher values
results in fewer modules (default is 1).

seed for the random number generator (0 for random by default).

numtrials for the number of trials before picking up the best solution.

twolevel a boolean indicating if the algorithm should optimize a two-level partition of
the network (default is multi-level).

show_hierarchy a boolean specifying if the hierarchy of community should be identifiable in the
outputs (FALSE by default).

directed a boolean indicating if the network is directed (from column 1 to column 2).
bipartite_version

a boolean indicating if the bipartite version of Infomap should be used (see
Note).

bipartite a boolean indicating if the network is bipartite (see Note).

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

version a character indicating the Infomap version to use.

binpath a character indicating the path to the bin folder (see install_binaries and De-
tails).

path_temp a character indicating the path to the temporary folder (see Details).

delete_temp a boolean indicating if the temporary folder should be removed (see Details).

Details

Infomap is a network clustering algorithm based on the Map equation proposed in (Rosvall and
Bergstrom 2008) that finds communities in (un)weighted and (un)directed networks.

This function is based on the C++ version of Infomap (https://github.com/mapequation/infomap/
releases). This function needs binary files to run. They can be installed with install_binaries.

If you changed the default path to the bin folder while running install_binaries PLEASE
MAKE SURE to set binpath accordingly.

https://github.com/mapequation/infomap/releases
https://github.com/mapequation/infomap/releases
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The C++ version of Infomap generates temporary folders and/or files that are stored in the path_temp
folder ("infomap_temp" with an unique timestamp located in the bin folder in binpath by default).
This temporary folder is removed by default (delete_temp = TRUE).

Several version of Infomap are available in the package. See install_binaries for more details.

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

In the algorithm slot, users can find the following elements:

• cmd: the command line use to run Infomap

• version: the Infomap version

• web: Infomap’s GitHub repository

Note

Infomap has been designed to deal with bipartite networks. To use this functionality set the bipartite_version
argument to TRUE in order to approximate a two-step random walker (see https://www.mapequation.
org/infomap/ for more information). Note that a bipartite network can also be considered as uni-
partite network (bipartite = TRUE).

In both cases do not forget to indicate which of the first two columns is dedicated to the site
nodes (i.e. primary nodes) and species nodes (i.e. feature nodes) using the arguments site_col
and species_col. The type of nodes returned in the output can be chosen with the argument
return_node_type equal to "both" to keep both types of nodes, "sites" to preserve only the
sites nodes and "species" to preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Rosvall M, Bergstrom CT (2008). “Maps of random walks on complex networks reveal community
structure.” Proceedings of the National Academy of Sciences, 105(4), 1118–1123.

See Also

install_binaries, netclu_louvain, netclu_oslom

https://www.mapequation.org/infomap/
https://www.mapequation.org/infomap/
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Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_infomap(net)

netclu_labelprop Finding communities based on propagating labels

Description

This function finds communities in a (un)weighted undirected network based on propagating labels.

Usage

netclu_labelprop(
net,
weight = TRUE,
index = names(net)[3],
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

bipartite a boolean indicating if the network is bipartite (see Details).
site_col name or number for the column of site nodes (i.e. primary nodes).
species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

a boolean indicating if the original output of communities should be returned
in the output (see Value).
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Details

This function is based on propagating labels (Raghavan et al. 2007) as implemented in the igraph
package (cluster_label_prop).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm
2. args: list of input arguments as provided by the user
3. inputs: list of characteristics of the clustering process
4. algorithm: list of all objects associated with the clustering procedure, such as original clus-

ter objects (only if algorithm_in_output = TRUE)
5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an "communities" object,
output of cluster_label_prop.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "sites" to preserve only the sites nodes and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Raghavan UN, Albert R, Kumara S (2007). “Near linear time algorithm to detect community struc-
tures in large-scale networks.” Physical Review E, 76(3), 036106.

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_labelprop(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_labelprop(net_bip, bipartite = TRUE)

https://cran.r-project.org/package=igraph
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netclu_leadingeigen Finding communities based on leading eigen vector of the community
matrix

Description

This function finds communities in a (un)weighted undirected network based on leading eigen vec-
tor of the community matrix.

Usage

netclu_leadingeigen(
net,
weight = TRUE,
index = names(net)[3],
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

bipartite a boolean indicating if the network is bipartite (see Details).

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

a boolean indicating if the original output of communities should be returned
in the output (see Value).

Details

This function is based on leading eigenvector of the community matrix (Newman 2006) as imple-
mented in the igraph package (cluster_leading_eigen).

https://cran.r-project.org/package=igraph
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Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an "communities" object,
output of cluster_leading_eigen.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "sites" to preserve only the sites nodes and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Newman MEJ (2006). “Finding community structure in networks using the eigenvectors of matri-
ces.” Physical Review E, 74(3), 036104.

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_leadingeigen(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_leadingeigen(net_bip, bipartite = TRUE)
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netclu_leiden Finding communities using the Leiden algorithm

Description

This function finds communities in a (un)weighted undirected network based on the Leiden algo-
rithm of Traag, van Eck & Waltman.

Usage

netclu_leiden(
net,
weight = TRUE,
index = names(net)[3],
objective_function = c("CPM", "modularity"),
resolution_parameter = 1,
beta = 0.01,
initial_membership = NULL,
n_iterations = 2,
vertex_weights = NULL,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

objective_function

Whether to use the Constant Potts Model (CPM) or modularity. Must be either
"CPM" or "modularity".

resolution_parameter

The resolution parameter to use. Higher resolutions lead to more smaller com-
munities, while lower resolutions lead to fewer larger communities.

beta Parameter affecting the randomness in the Leiden algorithm. This affects only
the refinement step of the algorithm.
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initial_membership

If provided, the Leiden algorithm will try to improve this provided member-
ship. If no argument is provided, the aglorithm simply starts from the singleton
partition.

n_iterations the number of iterations to iterate the Leiden algorithm. Each iteration may
improve the partition further.

vertex_weights the vertex weights used in the Leiden algorithm. If this is not provided, it will
be automatically determined on the basis of the objective_function. Please see
the details of this function how to interpret the vertex weights.

bipartite a boolean indicating if the network is bipartite (see Details).

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

a boolean indicating if the original output of communities should be returned
in the output (see Value).

Details

This function is based on the Leiden algorithm (Traag et al. 2019) as implemented in the igraph
package (cluster_leiden).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an "communities" object,
output of cluster_leiden.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "sites" to preserve only the sites nodes and "species" to
preserve only the species nodes.

https://cran.r-project.org/package=igraph
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Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Traag VA, Waltman L, Van Eck NJ (2019). “From Louvain to Leiden: guaranteeing well-connected
communities.” Scientific reports, 9(1), 5233. Publisher: Nature Publishing Group UK London.

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_leiden(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_leiden(net_bip, bipartite = TRUE)

netclu_louvain Louvain community finding

Description

This function finds communities in a (un)weighted undirected network based on the Louvain algo-
rithm.

Usage

netclu_louvain(
net,
weight = TRUE,
index = names(net)[3],
lang = "Cpp",
resolution = 1,
q = 0,
c = 0.5,
k = 1,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
binpath = "tempdir",
path_temp = "louvain_temp",
delete_temp = TRUE,
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algorithm_in_output = TRUE
)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

lang a string indicating what version of Louvain should be used (igraph or Cpp, see
Details).

resolution a resolution parameter to adjust the modularity (1 is chosen by default, see De-
tails).

q the quality function used to compute partition of the graph (modularity is chosen
by default, see Details).

c the parameter for the Owsinski-Zadrozny quality function (between 0 and 1, 0.5
is chosen by default).

k the kappa_min value for the Shi-Malik quality function (it must be > 0, 1 is
chosen by default).

bipartite a boolean indicating if the network is bipartite (see Details).

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

binpath a character indicating the path to the bin folder (see install_binaries and De-
tails).

path_temp a character indicating the path to the temporary folder (see Details).

delete_temp a boolean indicating if the temporary folder should be removed (see Details).
algorithm_in_output

a boolean indicating if the original output of communities should be returned
in the output (see Value). Default to TRUE.

Details

Louvain is a network community detection algorithm proposed in (Blondel et al. 2008). This func-
tion proposed two implementations of the function (parameter lang): the igraph implementation
(cluster_louvain) and the C++ implementation (https://sourceforge.net/projects/louvain/,
version 0.3).

The igraph implementation offers the possibility to adjust the resolution parameter of the modu-
larity function (resolution argument) that the algorithm uses internally. Lower values typically

https://cran.r-project.org/package=igraph
https://sourceforge.net/projects/louvain/
https://cran.r-project.org/package=igraph
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yield fewer, larger clusters. The original definition of modularity is recovered when the resolution
parameter is set to 1 (by default).

The C++ implementation offers the possibility to choose among several quality functions, q = 0 for
the classical Newman-Girvan criterion (also called "Modularity"), 1 for the Zahn-Condorcet crite-
rion, 2 for the Owsinski-Zadrozny criterion (you should specify the value of the parameter with the
c argument), 3 for the Goldberg Density criterion, 4 for the A-weighted Condorcet criterion,5 for
the Deviation to Indetermination criterion, 6 for the Deviation to Uniformity criterion, 7 for the Pro-
file Difference criterion, 8 for the Shi-Malik criterion (you should specify the value of kappa_min
with k argument) and 9 for the Balanced Modularity criterion.

The C++ version of Louvain is based on the version 0.3 (https://sourceforge.net/projects/
louvain/). This function needs binary files to run. They can be installed with install_binaries.

If you changed the default path to the bin folder while running install_binaries PLEASE
MAKE SURE to set binpath accordingly.

The C++ version of Louvain generates temporary folders and/or files that are stored in the path_temp
folder ("louvain_temp" with an unique timestamp located in the bin folder in binpath by default).
This temporary folder is removed by default (delete_temp = TRUE).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an "communities" object,
output of cluster_louvain if lang = "igraph" and the following element if lang = "Cpp":

• cmd: the command line use to run Louvain

• version: the Louvain version

• web: Louvain’s website

.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "sites" to preserve only the sites nodes and "species" to
preserve only the species nodes.

https://sourceforge.net/projects/louvain/
https://sourceforge.net/projects/louvain/
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Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Blondel VD, Guillaume JL, Lambiotte R, Mech ELJS (2008). “Fast unfolding of communities in
large networks.” J. Stat. Mech, P10008.

See Also

install_binaries(), netclu_infomap(), netclu_oslom()

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_louvain(net, lang = "igraph")

netclu_oslom OSLOM community finding

Description

This function finds communities in a (un)weighted (un)directed network based on the OSLOM
algorithm (http://oslom.org/, version 2.4).

Usage

netclu_oslom(
net,
weight = TRUE,
index = names(net)[3],
reassign = "no",
r = 10,
hr = 50,
seed = 0,
t = 0.1,
cp = 0.5,
directed = FALSE,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",

http://oslom.org/
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binpath = "tempdir",
path_temp = "oslom_temp",
delete_temp = TRUE

)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

reassign a string indicating if the nodes belonging to several community should be reas-
sign and what method should be used (see Note).

r the number of runs for the first hierarchical level (10 by default).

hr the number of runs for the higher hierarchical level (50 by default, 0 if you are
not interested in hierarchies).

seed for the random number generator (0 for random by default).

t the p-value, the default value is 0.10, increase this value you to get more mod-
ules.

cp kind of resolution parameter used to decide between taking some modules or
their union (default value is 0.5, bigger value leads to bigger clusters).

directed a boolean indicating if the network is directed (from column 1 to column 2).

bipartite a boolean indicating if the network is bipartite (see Details).

site_col name or number for the column of site nodes (i.e. primary nodes).

species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

binpath a character indicating the path to the bin folder (see install_binaries and De-
tails).

path_temp a character indicating the path to the temporary folder (see Details).

delete_temp a boolean indicating if the temporary folder should be removed (see Details).

Details

OSLOM is a network community detection algorithm proposed in (Lancichinetti et al. 2011) that
finds statistically significant (overlapping) communities in (un)weighted and (un)directed networks.

This function is based on the 2.4 C++ version of OSLOM (http://www.oslom.org/software.
htm). This function needs files to run. They can be installed with install_binaries.

If you changed the default path to the bin folder while running install_binaries PLEASE
MAKE SURE to set binpath accordingly.

http://www.oslom.org/software.htm
http://www.oslom.org/software.htm
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The C++ version of OSLOM generates temporary folders and/or files that are stored in the path_temp
folder (folder "oslom_temp" with an unique timestamp located in the bin folder in binpath by de-
fault). This temporary folder is removed by default (delete_temp = TRUE).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

In the algorithm slot, users can find the following elements:

• cmd: the command line use to run OSLOM

• version: the OSLOM version

• web: the OSLOM’s web site

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE). Do not forget to indicate
which of the first two columns is dedicated to the site nodes (i.e. primary nodes) and species nodes
(i.e.feature nodes) using the arguments site_col and species_col. The type of nodes returned in
the output can be chosen with the argument return_node_type equal to "both" to keep both types
of nodes, "sites" to preserve only the sites nodes and "species" to preserve only the species
nodes.

Since OSLOM potentially returns overlapping communities we propose two methods to reassign the
’overlapping’ nodes randomly reassign = 'random' or based on the closest candidate community
reassign = 'simil' (only for weighted networks, in this case the closest candidate community is
determined with the average similarity). By default reassign = 'no' and all the information will be
provided. The number of partitions will depend on the number of overlapping modules (up to three).
The suffix ’_semel’, ’_bis’ and ’_ter’ are added to the column names. The first partition (’_semel’)
assigns a module for each node. A value of 0 in the second (’_bis’) and third (’_ter’) columns
indicates that no overlapping module were found for this node (i.e. non-overlapping nodes).

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011). “Finding statistically significant
communities in networks.” PloS one, 6(4).
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See Also

install_binaries(), netclu_infomap(), netclu_louvain()

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_oslom(net)

netclu_walktrap Community structure detection via short random walks

Description

This function finds communities in a (un)weighted undirected network via short random walks.

Usage

netclu_walktrap(
net,
weight = TRUE,
index = names(net)[3],
steps = 4,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net the output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight a boolean indicating if the weights should be considered if there are more than
two columns.

index name or number of the column to use as weight. By default, the third column
name of net is used.

steps the length of the random walks to perform.

bipartite a boolean indicating if the network is bipartite (see Details).

site_col name or number for the column of site nodes (i.e. primary nodes).
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species_col name or number for the column of species nodes (i.e. feature nodes).
return_node_type

a character indicating what types of nodes ("sites", "species" or "both") should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

a boolean indicating if the original output of communities should be returned
in the output (see Value).

Details

This function is based on random walks (Pons and Latapy 2005) as implemented in the igraph
package (cluster_walktrap).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find an "communities" object,
output of cluster_walktrap.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "sites" to preserve only the sites nodes and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Pons P, Latapy M (2005). “Computing Communities in Large Networks Using Random Walks.” In
Yolum I, Güngör T, Gürgen F, Özturan C (eds.), Computer and Information Sciences - ISCIS 2005,
Lecture Notes in Computer Science, 284–293.

https://cran.r-project.org/package=igraph
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Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_walktrap(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_walktrap(net_bip, bipartite = TRUE)

net_to_mat Create a contingency table from a data.frame

Description

This function creates a contingency table from a two- or three-columns data.frame where each
row represents the interaction between two nodes (site and species for example) and an optional
third column indicating the weight of the interaction (if weight = TRUE).

Usage

net_to_mat(
net,
weight = FALSE,
squared = FALSE,
symmetrical = FALSE,
missing_value = 0

)

Arguments

net a two- or three-columns data.frame where each row represents the interaction
between two nodes (site and species for example) and an optional third column
indicating the weight of the interaction.

weight a boolean indicating if the weight should be considered

squared a boolean indicating if the output matrix should but squared (same nodes in
rows and columns).

symmetrical a boolean indicating if the resulting matrix should be symmetrical (only if
squared = TRUE). Note that different weights associated with two opposite pairs
already present in net will be preserved.

missing_value the value to assign to the pairs of nodes not present in net (0 by default).
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Value

A matrix with the first nodes (first column of net) as rows and the second nodes (second column
of net) as columns. Note that if squared = TRUE the rows and columns have the same number of
elements corresponding to the concatenation of unique objects in net’s first and second columns.
If squared = TRUE the matrix can be forced to be symmetrical based on the upper triangular part of
the matrix.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

See Also

mat_to_net

Examples

net <- data.frame(
Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
Species = c("a", "b", "a", "c", "d", "b", "d"),
Weight = c(10, 100, 1, 20, 50, 10, 20)

)

mat <- net_to_mat(net, weight = TRUE)

nhclu_clara Non hierarchical clustering: CLARA

Description

This function performs non hierarchical clustering on the basis of dissimilarity with partitioning
around medoids, using the Clustering Large Applications (CLARA) algorithm.

Usage

nhclu_clara(
dissimilarity,
index = names(dissimilarity)[3],
n_clust = NULL,
maxiter = 0L,
initializer = "LAB",
fasttol = 1,
numsamples = 5L,
sampling = 0.25,
independent = FALSE,
seed = 123456789L

)
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Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

n_clust an integer or a vector of integers specifying the requested number(s) of
clusters.

maxiter an integer defining the maximum number of iterations.

initializer character string, either ’BUILD’ (used in classic PAM algorithm) or ’LAB’ (lin-
ear approximative BUILD).

fasttol Positive numeric defining the tolerance for fast swapping behavior, set to 1 by
default.

numsamples Positive integer defining the number of samples to draw.

sampling Positive numeric defining the sampling rate.

independent Logical, FALSE by default meaning that the previous medoids are not kept in
the next sample.

seed an integer to define a generator of random numbers.

Details

Based on fastkmedoids R package.

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>), Boris Leroy (<leroy.boris@gmail.com>), and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Schubert E, Rousseeuw PJ (2019). “Faster k-Medoids Clustering: Improving the PAM, CLARA,
and CLARANS Algorithms.” Similarity Search and Applications, 11807, 171–187.
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See Also

nhclu_pam

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

clust1 <- nhclu_clara(dissim, index = "Simpson", n_clust = 5)

partition_metrics(clust1, dissimilarity = dissim,
eval_metric = "pc_distance")

nhclu_clarans Non hierarchical clustering: CLARANS

Description

This function performs non hierarchical clustering on the basis of dissimilarity with partitioning
around medoids, using the Clustering Large Applications based on RANdomized Search (CLARANS)
algorithm.

Usage

nhclu_clarans(
dissimilarity,
index = names(dissimilarity)[3],
n_clust = NULL,
numlocal = 2L,
maxneighbor = 0.025,
seed = 123456789L

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.
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n_clust an integer or a vector of integers specifying the requested number(s) of
clusters.

numlocal an integer defining the number of samples to draw.
maxneighbor A positive numeric defining the sampling rate.
seed an integer to define a generator of random numbers.

Details

Based on fastkmedoids R package.

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm
2. args: list of input arguments as provided by the user
3. inputs: list of characteristics of the clustering process
4. algorithm: list of all objects associated with the clustering procedure, such as original clus-

ter objects
5. clusters: data.frame containing the clustering results

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>), Boris Leroy (<leroy.boris@gmail.com>), and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Schubert E, Rousseeuw PJ (2019). “Faster k-Medoids Clustering: Improving the PAM, CLARA,
and CLARANS Algorithms.” Similarity Search and Applications, 11807, 171–187.

See Also

nhclu_pam

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

clust1 <- nhclu_clarans(dissim, index = "Simpson", n_clust = 5)

partition_metrics(clust1, dissimilarity = dissim,
eval_metric = "pc_distance")
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nhclu_dbscan dbscan clustering

Description

This function performs non hierarchical clustering on the basis of dissimilarity with Density-based
Spatial Clustering of Applications with Noise (DBSCAN)

Usage

nhclu_dbscan(
dissimilarity,
index = names(dissimilarity)[3],
minPts = NULL,
eps = NULL,
plot = TRUE,
...

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

minPts a numeric value or a vector of numeric values specifying the minPts argument
of dbscan::dbscan()). minPts is the minimum number of points to form a dense
region. By default, it is set to the natural logarithm of the number of sites in
dissimilarity. See details for guidance on choosing this parameter.

eps a numeric value or a vector of numeric values specifying the eps argument
of dbscan::dbscan()). eps specifies how similar points should be to each other
to be considered a part of a cluster. See details for guidance on choosing this
parameter.

plot a boolean indicating if the k-nearest neighbor distance plot should be plotted.

... you can add here further arguments to be passed to dbscan() (see dbscan::dbscan())

Details

The dbscan (Density-based spatial clustering of applications with noise) clustering algorithm clus-
ters points on the basis of the density of neighbours around each data points. It necessitates two
main arguments, minPts, which stands for the minimum number of points to identify a core, and
eps, which is the radius to find neighbors. minPts and eps should be defined by the user, which is
not straightforward. We recommend reading the help in dbscan::dbscan()) to learn how to set these
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arguments, as well as the paper (Hahsler et al. 2019). Note that clusters with a value of 0 are points
which were deemed as noise by the algorithm.

By default the function will select values for minPts and eps. However, these values can be inade-
quate and the users is advised to tune these values by running the function multiple times.

Choosing minPts: how many points should be necessary to make a cluster? i.e., what is the
minimum number of sites you expect in a bioregion? Set a value sufficiently large for your dataset
and your expectations.

Choosing eps: how similar should sites be in a cluster? If eps is too small, then a majority of points
will be considered too distinct and will not be clustered at all (i.e., considered as noise)? If the value
is too high, then clusters will merge together. The value of eps depends on the minPts argument,
and the literature recommends to choose eps by identifying a knee in the k-nearest neighbor distance
plot. By default the function will try to automatically find a knee in that curve, but the result is
uncertain, and so the user should inspect the graph and modify dbscan_eps accordingly.To explore
eps values, follow the recommendation by the function when you launch it a first time without
defining eps. Then, adjust depending on your clustering results.

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Pierre Denelle (<pierre.denelle@gmail.com>) and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

See Also

hclu_optics

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

clust1 <- nhclu_dbscan(dissim, index = "Simpson")
clust2 <- nhclu_dbscan(dissim, index = "Simpson", eps = 0.2)
clust3 <- nhclu_dbscan(dissim, index = "Simpson", minPts = c(5, 10, 15, 20),
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eps = c(.1, .15, .2, .25, .3))

nhclu_kmeans Non hierarchical clustering: k-means analysis

Description

This function performs non hierarchical clustering on the basis of dissimilarity with a k-means
analysis.

Usage

nhclu_kmeans(
dissimilarity,
index = names(dissimilarity)[3],
n_clust = NULL,
iter_max = 10,
nstart = 10,
algorithm = "Hartigan-Wong"

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

n_clust an integer or a vector of integers specifying the requested number(s) of
clusters

iter_max an integer specifying the maximum number of iterations for the kmeans method
(see stats::kmeans())

nstart an integer specifying how many random sets of n_clust should be selected as
starting points for the kmeans analysis (see stats::kmeans())

algorithm a character string specifying the algorithm to use for kmean (see stats::kmeans()).
Available options are Hartigan-Wong, Lloyd, Forgy and MacQueen.

Details

This method partitions the data into k groups such that that the sum of squares of euclidean distances
from points to the assigned cluster centers is minimized. k-means cannot be applied directly on
dissimilarity/beta-diversity metrics, because these distances are not euclidean. Therefore, it requires
first to transform the dissimilarity matrix with a Principal Coordinate Analysis (using the function
ape::pcoa()), and then applying k-means on the coordinates of points in the PCoA. Because this
makes an additional transformation of the initial matrix of dissimilarity, the partitioning around
medoids method should be preferred (nhclu_pam())
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Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects

5. clusters: data.frame containing the clustering results

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Pierre Denelle (<pierre.denelle@gmail.com>) and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

See Also

nhclu_pam

cut_tree

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

comnet <- mat_to_net(comat)

dissim <- dissimilarity(comat, metric = "all")

clust1 <- nhclu_kmeans(dissim, n_clust = 2:10, index = "Simpson")
clust2 <- nhclu_kmeans(dissim, n_clust = 2:15, index = "Simpson")
partition_metrics(clust2, dissimilarity = dissim,

eval_metric = "pc_distance")

partition_metrics(clust2, net = comnet, species_col = "Node2",
site_col = "Node1", eval_metric = "avg_endemism")

nhclu_pam Non hierarchical clustering: partitioning around medoids

Description

This function performs non hierarchical clustering on the basis of dissimilarity with partitioning
around medoids.
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Usage

nhclu_pam(
dissimilarity,
index = names(dissimilarity)[3],
n_clust = NULL,
nstart = if (variant == "faster") 1 else NA,
variant = "faster",
cluster_only = FALSE,
...

)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the next column(s) are the dissimilarity in-
dices.

index name or number of the dissimilarity column to use. By default, the third column
name of dissimilarity is used.

n_clust an integer or a vector of integers specifying the requested number(s) of
clusters.

nstart an integer specifying the number of random “starts” for the pam algorithm.
By default, 1 (for the "faster" variant).

variant a character string specifying the variant of pam to use, by default "faster".
Available options are original, o_1, o_2, f_3, f_4, f_5 or fasterSee cluster::pam()
for more details.

cluster_only a boolean specifying if only the clustering should be returned from the clus-
ter::pam() function (more efficient).

... you can add here further arguments to be passed to pam() (see cluster::pam())

Details

This method partitions data into the chosen number of cluster on the basis of the input dissimilarity
matrix. It is more robust than k-means because it minimizes the sum of dissimilarity between
cluster centres and points assigned to the cluster - whereas the k-means approach minimizes the sum
of squared euclidean distances (thus k-means cannot be applied directly on the input dissimilarity
matrix if the distances are not euclidean).

Value

A list of class bioregion.clusters with five slots:

1. name: character string containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects
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5. clusters: data.frame containing the clustering results

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Pierre Denelle (<pierre.denelle@gmail.com>) and
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Kaufman L, Rousseeuw PJ (2009). “Finding groups in data: An introduction to cluster analysis.”
In & Sons. JW (ed.), Finding groups in data: An introduction to cluster analysis..

See Also

nhclu_kmeans

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

comnet <- mat_to_net(comat)
dissim <- dissimilarity(comat, metric = "all")

clust1 <- nhclu_pam(dissim, n_clust = 2:10, index = "Simpson")
clust2 <- nhclu_pam(dissim, n_clust = 2:15, index = "Simpson")
partition_metrics(clust2, dissimilarity = dissim,
eval_metric = "pc_distance")
partition_metrics(clust2, net = comnet, species_col = "Node2",

site_col = "Node1", eval_metric = "avg_endemism")

partition_metrics Calculate metrics for one or several partitions

Description

This function aims at calculating metrics for one or several partitions, usually on outputs from
netclu_, hclu_ or nhclu_ functions. Metrics may require the users to provide either a similarity
or dissimilarity matrix, or to provide the initial species-site table.

Usage

partition_metrics(
cluster_object,
dissimilarity = NULL,
dissimilarity_index = NULL,
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net = NULL,
site_col = 1,
species_col = 2,
eval_metric = c("pc_distance", "anosim", "avg_endemism", "tot_endemism")

)

Arguments

cluster_object a bioregion.clusters object

dissimilarity a dist object or a bioregion.pairwise.metric object (output from similarity_to_dissimilarity()).
Necessary if eval_metric includes pc_distance and tree is not a bioregion.hierar.tree
object

dissimilarity_index

a character string indicating the dissimilarity (beta-diversity) index to be used in
case dist is a data.frame with multiple dissimilarity indices

net the species-site network (i.e., bipartite network). Should be provided if eval_metric
includes "avg_endemism" or "tot_endemism"

site_col name or number for the column of site nodes (i.e. primary nodes). Should be
provided if eval_metric includes "avg_endemism" or "tot_endemism"

species_col name or number for the column of species nodes (i.e. feature nodes). Should be
provided if eval_metric includes "avg_endemism" or "tot_endemism"

eval_metric character string or vector of character strings indicating metric(s) to be calcu-
lated to investigate the effect of different number of clusters. Available options:
"pc_distance", "anosim", "avg_endemism" and "tot_endemism"

Details

Evaluation metrics:

• pc_distance: this metric is the method used by (Holt et al. 2013). It is a ratio of the
between-cluster sum of dissimilarity (beta-diversity) versus the total sum of dissimilarity
(beta-diversity) for the full dissimilarity matrix. In other words, it is calculated on the ba-
sis of two elements. First, the total sum of dissimilarity is calculated by summing the entire
dissimilarity matrix (dist). Second, the between-cluster sum of dissimilarity is calculated as
follows: for a given number of cluster, the dissimilarity is only summed between clusters, not
within clusters. To do that efficiently, all pairs of sites within the same clusters have their dis-
similarity set to zero in the dissimilarity matrix, and then the dissimilarity matrix is summed.
The pc_distance ratio is obtained by dividing the between-cluster sum of dissimilarity by
the total sum of dissimilarity.

• anosim: This metric is the statistic used in Analysis of Similarities, as suggested in (Castro-
Insua et al. 2018) (see vegan::anosim()). It compares the between-cluster dissimilarities to
the within-cluster dissimilarities. It is based based on the difference of mean ranks between
groups and within groups with the following formula: R = (rB − rW )/(N(N − 1)/4),
where rB and rW are the average ranks between and within clusters respectively, and N is the
total number of sites. Note that the function does not estimate the significance here, it only
computes the statistic - for significance testing see vegan::anosim().
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• avg_endemism: this metric is the average percentage of endemism in clusters as recommended
by (Kreft and Jetz 2010). Calculated as follows: Endmean =

∑K
i=1 Ei/Si

K where Ei is the
number of endemic species in cluster i, Si is the number of species in cluster i, and K the
maximum number of clusters.

• tot_endemism: this metric is the total endemism across all clusters, as recommended by
(Kreft and Jetz 2010). Calculated as follows: Endtot =

E
C

where E is total the number of endemics (i.e., species found in only one cluster) and C is the
number of non-endemic species.

Value

a list of class bioregion.partition.metrics with two to three elements:

• args: input arguments

• evaluation_df: the data.frame containing eval_metric for all explored numbers of clusters

• endemism_results: if endemism calculations were requested, a list with the endemism re-
sults for each partition

Author(s)

Boris Leroy (<leroy.boris@gmail.com>), Maxime Lenormand (<maxime.lenormand@inrae.fr>)
and Pierre Denelle (<pierre.denelle@gmail.com>)

References

Castro-Insua A, Gómez-Rodríguez C, Baselga A (2018). “Dissimilarity measures affected by rich-
ness differences yield biased delimitations of biogeographic realms.” Nature Communications, 9(1),
9–11.

Ficetola GF, Mazel F, Thuiller W (2017). “Global determinants of zoogeographical boundaries.”
Nature Ecology & Evolution, 1, 0089.

Holt BG, Lessard J, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P, Graham CH,
Graves GR, Jønsson Ka, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C (2013). “An
update of Wallace’s zoogeographic regions of the world.” Science, 339(6115), 74–78.

Kreft H, Jetz W (2010). “A framework for delineating biogeographical regions based on species
distributions.” Journal of Biogeography, 37, 2029–2053.

Langfelder P, Zhang B, Horvath S (2008). “Defining clusters from a hierarchical cluster tree: the
Dynamic Tree Cut package for R.” BIOINFORMATICS, 24(5), 719–720.

See Also

compare_partitions

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)
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comnet <- mat_to_net(comat)

dissim <- dissimilarity(comat, metric = "all")

# User-defined number of clusters
tree1 <- hclu_hierarclust(dissim, n_clust = 2:20, index = "Simpson")
tree1

a <- partition_metrics(tree1, dissimilarity = dissim, net = comnet,
site_col = "Node1", species_col = "Node2",
eval_metric = c("tot_endemism", "avg_endemism",

"pc_distance", "anosim"))
a

similarity Compute similarity metrics between sites based on species composi-
tion

Description

This function creates a data.frame where each row provides one or several similarity metric(s)
between each pair of sites from a co-occurrence matrix with sites as rows and species as columns.

Usage

similarity(comat, metric = "Simpson", formula = NULL, method = "prodmat")

Arguments

comat a co-occurrence matrix with sites as rows and species as columns.

metric a vector of string(s) indicating which metrics to chose (see Details). Available
options are abc, ABC, Jaccard, Jaccardturn, Sorensen, Simpson, Bray, Brayturn
or Euclidean.
If "all" is specified, then all metrics will be calculated. Can be set to NULL if
formula is used.

formula a vector of string(s) with your own formula based on the a, b, c, A, B, and C
quantities (see Details). formula is set to NULL by default.

method a string indicating what method should be used to compute abc (see Details).
method = "prodmat" by default is more efficient but can be greedy in memory
and method = "loops" is less efficient but less greedy in memory.
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Details

With a the number of species shared by a pair of sites, b species only present in the first site and c
species only present in the second site.

Jaccard = 1− (b+ c)/(a+ b+ c)

Jaccardturn = 1− 2min(b, c)/(a+ 2min(b, c)) (Baselga 2012)

Sorensen = 1− (b+ c)/(2a+ b+ c)

Simpson = 1−min(b, c)/(a+min(b, c))

If abundances data are available, Bray-Curtis and its turnover component can also be computed with
the following equation:

Bray = 1− (B + C)/(2A+B + C)

Brayturn = 1−min(B,C)/(A+min(B,C)) (Baselga 2013)

with A the sum of the lesser values for common species shared by a pair of sites. B and C are the
total number of specimens counted at both sites minus A.

formula can be used to compute customized metrics with the terms a, b, c, A, B, and C. For ex-
ample formula = c("1 - (b + c) / (a + b + c)", "1 - (B + C) / (2*A + B + C)") will compute the
Jaccard and Bray-Curtis similarity metrics, respectively.

Euclidean computes the Euclidean similarity between each pair of site following this equation:

Euclidean = 1/(1 + dij)

Where dij is the Euclidean distance between site i and site j in terms of species composition.

Value

A data.frame with additional class bioregion.pairwise.metric, providing one or several sim-
ilarity metric(s) between each pair of sites. The two first columns represent each pair of sites. One
column per similarity metric provided in metric and formula except for the metric abc and ABC
that are stored in three columns (one for each letter).

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

References

Baselga A (2012). “The Relationship between Species Replacement, Dissimilarity Derived from
Nestedness, and Nestedness.” Global Ecology and Biogeography, 21(12), 1223–1232.

Baselga A (2013). “Separating the two components of abundance-based dissimilarity: balanced
changes in abundance vs. abundance gradients.” Methods in Ecology and Evolution, 4(6), 552–
557.

See Also

dissimilarity dissimilarity_to_similarity similarity_to_dissimilarity
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Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

sim <- similarity(comat, metric = c("abc", "ABC", "Simpson", "Brayturn"))

sim <- similarity(comat, metric = "all",
formula = "1 - (b + c) / (a + b + c)")

similarity_to_dissimilarity

Convert similarity metrics to dissimilarity metrics

Description

This function converts a data.frame of similarity metrics between sites to dissimilarity metrics (beta
diversity).

Usage

similarity_to_dissimilarity(similarity, include_formula = TRUE)

Arguments

similarity the output object from similarity() or dissimilarity_to_similarity().
include_formula

a boolean indicating if the metrics based on your own formula should be con-
verted (see Details). This argument is set to TRUE by default.

Value

A data.frame with additional class bioregion.pairwise.metric, providing dissimilarity met-
ric(s) between each pair of sites based on a similarity object.

Note

The behavior of this function changes depending on column names. Columns Site1 and Site2 are
copied identically. If there are columns called a, b, c, A, B, C they will also be copied identically.
If there are columns based on your own formula (argument formula in similarity()) or not in
the original list of similarity metrics (argument metrics in similarity()) and if the argument
include_formula is set to FALSE, they will also be copied identically. Otherwise there are going
to be converted like they other columns (default behavior).

If a column is called Euclidean, its distance will be calculated based on the following formula:

Euclideandistance = (1− Euclideansimilarity)/Euclideansimilarity
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Otherwise, all other columns will be transformed into dissimilarity with the following formula:

dissimilarity = 1− similarity

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Boris Leroy (<leroy.boris@gmail.com>)
and Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

dissimilarity_to_similarity() similarity() dissimilarity()

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

simil <- similarity(comat, metric = "all")
simil

dissimilarity <- similarity_to_dissimilarity(simil)
dissimilarity

subset_node Extract a subset of node from a bioregion.clusters object

Description

This function extracts a subset of node according to its type (sites or species) from a bioregion.clusters
object containing both types of nodes (sites and species).

Usage

subset_node(clusters, node_type = "sites")

Arguments

clusters an object of class bioregion.clusters.

node_type a character indicating what types of nodes ("sites" or "species") should be
extracted (node_type = "sites" by default).

Value

An object of class bioregion.clusters with a given node type (sites or species).
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Note

The network clustering functions (prefix netclu_) may return both types of nodes (sites and species)
when applied on bipartite networks (argument bipartite). In this case, the type of nodes returned
in the output can be chosen with the argument return_node_type. This function allows to re-
trieve a particular type of nodes (sites or species) from the output and modify the return_node_type
accordingly.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>), Pierre Denelle (<pierre.denelle@gmail.com>)
and Boris Leroy (<leroy.boris@gmail.com>)

Examples

net <- data.frame(
Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
Species = c("a", "b", "a", "c", "d", "b", "d"),
Weight = c(10, 100, 1, 20, 50, 10, 20)

)

clusters <- netclu_louvain(net, lang = "igraph", bipartite = TRUE)

clusters_sites <- subset_node(clusters, node_type = "sites")

vegedf Spatial distribution of Mediterranean vegetation (data.frame)

Description

A dataset containing the abundance of 3,697 species in 715 sites.

Usage

vegedf

Format

A data.frame with 460,878 rows and 3 columns:

Site Unique site identifier (corresponding to the field ID of vegesp).

Species Unique species identifier.

Abundance Species abundance

Source

doi:10.1002/ece3.4718

https://doi.org/10.1002/ece3.4718
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vegemat Spatial distribution of Mediterranean vegetation (co-occurrence ma-
trix)

Description

A dataset containing the abundance of each of the 3,697 species in each of the 715 sites.

Usage

vegemat

Format

A co-occurrence matrix with sites as rows and species as columns. Each element of the matrix
represents the abundance of the species in the site.

Source

doi:10.1002/ece3.4718

vegesf Spatial distribution of Mediterranean vegetation (spatial grid)

Description

A dataset containing the geometry of the 715 sites.

Usage

vegesf

Format

A

ID Unique site identifier.

geometry Geometry of the site.

Source

doi:10.1002/ece3.4718

https://doi.org/10.1002/ece3.4718
https://doi.org/10.1002/ece3.4718
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