
Package ‘biopixR’
March 25, 2024

Title Extracting Insights from Biological Images

Version 0.2.4

Description Combines the 'magick' and 'imager' packages to streamline image analysis, focus-
ing on feature extraction and quantification from biological images, especially
microparticles. By providing high throughput pipelines and clustering capabilities, 'biopixR' fa-
cilitates efficient insight generation for researchers (Schneider J. et al. (2019)
<doi:10.21037/jlpm.2019.04.05>).

License LGPL (>= 3)

VignetteBuilder knitr

BuildVignettes true

Depends R (>= 4.2.0), data.table, imager, magick, tcltk, foreach

Suggests knitr, rmarkdown, doParallel, kohonen

Encoding UTF-8

RoxygenNote 7.2.3

LazyData true

LazyLoad yes

NeedsCompilation no

Language en-US

URL https://github.com/Brauckhoff/biopixR

BugReports https://github.com/Brauckhoff/biopixR/issues

Author Tim Brauckhoff [aut, cre] (<https://orcid.org/0009-0002-0142-7017>),
Stefan Roediger [ctb] (<https://orcid.org/0000-0002-1441-6512>),
Coline Kieffer [ctb]

Maintainer Tim Brauckhoff <Tim.Brauckhoff@b-tu.de>

Repository CRAN

Date/Publication 2024-03-25 19:10:09 UTC

1

https://doi.org/10.21037/jlpm.2019.04.05
https://github.com/Brauckhoff/biopixR
https://github.com/Brauckhoff/biopixR/issues
https://orcid.org/0009-0002-0142-7017
https://orcid.org/0000-0002-1441-6512

2 adaptiveInterpolation

R topics documented:
adaptiveInterpolation . 2
beads . 4
changePixelColor . 5
droplets . 5
droplet_beads . 6
edgeDetection . 7
fillLineGaps . 8
imgPipe . 9
interactive_objectDetection . 10
interpolatePixels . 11
objectDetection . 12
proximityFilter . 13
resultAnalytics . 14
sizeFilter . 15

Index 17

adaptiveInterpolation Connects LineEnd with the nearest labeled region

Description

Function scans an increasing radius around a line end and connects it with the nearest labeled region.

Usage

adaptiveInterpolation(
end_points_df,
diagonal_edges_df,
clean_lab_df,
lineends_cimg,
radius = 5

)

Arguments

end_points_df data frame with the coordinates of all line ends. can be obtained with image_morphology.
diagonal_edges_df

data frame with coordinates of diagonal line ends. can also be obtained by
image_morphology.

clean_lab_df data of type ’data.frame’, containing the x, y and value information of every
labeled region in an image. (only the edges should be labeled)

lineends_cimg image with dimensions of the image with discontinuous edges. just for giving
the dimensions of the output matrix.

radius maximal radius that should be scanned for another cluster

adaptiveInterpolation 3

Details

This function is intended to be part of the fillLineGaps function, which does the thresholding and
line end detection preprocessing. The adaptiveInterpolation creates a matrix in the dimensions of
the original image. At the beginning there are only background values (0) = black image. The
function then searches for LineEnds and looks for a given radius around this line end for the nearest
labeled region. The own cluster of the line end is of course not considered as nearest neighbor.If
another cluster is found, the interpolatePixels function is used to connect the line end to the found
cluster. This means that specified pixels of the matrix are transformed to a foreground value of
(1). The diagonal line ends get a special treatment, because for the labeling function,7 the diagonal
pixels are always treated as a separate cluster, which makes them difficult to reconnect. To deal
with this problem, diagonal line ends ignore not only their cluster, but also the cluster of the direct
neighbor. Thereafter, the same procedure as before is repeated, where pixel values are changed
according to the interpolatePixel function.

Value

binary matrix that can be applied as an overlay, for example with imager.combine to fill the gaps
between line ends.

Examples

creating an artificial binary image
mat <- matrix(0, 8, 8)
mat[3, 1:2] <- 1
mat[4, 3] <- 1
mat[7:8, 3] <- 1
mat[5, 6:8] <- 1
mat_cimg <- as.cimg(mat)

preprocessing / LineEnd detection / labeling (done in fillLineGaps)
mat_cimg_m <- mirror(mat_cimg, axis = "x")
mat_magick <- cimg2magick(mat_cimg)
lineends <- image_morphology(mat_magick, "HitAndMiss", "LineEnds")
diagonalends <- image_morphology(mat_magick, "HitAndMiss", "LineEnds:2>")
lineends_cimg <- magick2cimg(lineends)
diagonalends_cimg <- magick2cimg(diagonalends)
end_points <- which(lineends_cimg == TRUE, arr.ind = TRUE)
end_points_df <- as.data.frame(end_points)
colnames(end_points_df) <- c("x", "y", "dim3", "dim4")
diagonal_edges <- which(diagonalends_cimg == TRUE, arr.ind = TRUE)
diagonal_edges_df <- as.data.frame(diagonal_edges)
colnames(diagonal_edges_df) <- c("x", "y", "dim3", "dim4")
lab <- label(mat_cimg_m)
df_lab <- as.data.frame(lab) |> subset(value > 0)
alt_x <- list()
alt_y <- list()
alt_value <- list()
for (g in 1:nrow(df_lab)) {

if (mat_cimg_m[df_lab$x[g], df_lab$y[g], 1, 1] == 1) {
alt_x[g] <- df_lab$x[g]
alt_y[g] <- df_lab$y[g]

4 beads

alt_value[g] <- df_lab$value[g]
}

}
clean_lab_df <- data.frame(

x = unlist(alt_x),
y = unlist(alt_y),
value = unlist(alt_value)

)

actual function
overlay <- adaptiveInterpolation(

end_points_df,
diagonal_edges_df,
clean_lab_df,
mat_cimg

)
parmax(list(mat_cimg_m, as.cimg(overlay$overlay))) |> plot()

beads Image of microbeads

Description

This fluorescence image, formatted as ’cimg’ with dimensions of 117 x 138 pixels, shows mi-
crobeads. With a single color channel, the image provides an ideal example for in-depth analysis of
microbead structures.

Usage

beads

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

Details

Dimensions: width - 117; height - 138; depth - 1; channel - 1

References

The image was provided by Coline Kieffer.

Examples

data(beads)
plot(beads)

changePixelColor 5

changePixelColor Change the color of pixels

Description

Can be used to change the color of specified pixels in an image. The coordinates of the pixels are
needed to colorize them.

Usage

changePixelColor(img, coords, color = "purple", visualize = FALSE)

Arguments

img image (import by load.image)

coords coordinates specifying which pixels to be colored (should be a X|Y Data frame
(first column: X; second column: Y)).

color color with which to replace specified pixels. can be either a an RGB triplet or
one of the colors listed by colors.

visualize if TRUE the resulting image gets plotted

Value

cimg with changed colors at desired positions and plot of the cimg

References

https://CRAN.R-project.org/package=countcolors

Examples

coordinates <- objectDetection(beads)
changePixelColor(beads, coordinates$coordinates)

droplets Droplets containing microbeads

Description

The image displays a water-oil emulsion with droplets observed through brightfield microscopy. It
is formatted as ’cimg’ and sized at 151 × 112 pixels. The droplets vary in size, and some contain
microbeads, which adds complexity. Brightfield microscopy enhances the contrast between water
and oil, revealing the droplet arrangement.

6 droplet_beads

Usage

droplets

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

Details

Dimensions: width - 151; height - 112; depth - 1; channel - 1

References

The image was provided by Coline Kieffer.

Examples

data(droplets)
plot(droplets)

droplet_beads Image of microbeads in luminescence channel

Description

The image shows red fluorescence rhodamine microbeads measuring 151 x 112 pixels. The fluo-
rescence channel was used to obtain the image, resulting in identical dimensions and positions of
the beads as in the original image (droplets).

Usage

droplet_beads

Format

The image was imported using imager and is therefore of class: "cimg" "imager_array" "numeric"

Details

Dimensions: width - 151; height - 112; depth - 1; channel - 3

References

The image was provided by Coline Kieffer.

Examples

data(droplet_beads)
plot(droplet_beads)

edgeDetection 7

edgeDetection Canny edge detector

Description

Adapted code from the imager cannyEdges) function without the usage of dplyr and purrr. If the
threshold parameters are missing, they are determined automatically using a k-means heuristic. Use
the alpha parameter to adjust the automatic thresholds up or down. The thresholds are returned as
attributes. The edge detection is based on a smoothed image gradient with a degree of smoothing
set by the sigma parameter.

Usage

edgeDetection(img, t1, t2, alpha = 1, sigma = 2)

Arguments

img input image

t1 threshold for weak edges (if missing, both thresholds are determined automati-
cally)

t2 threshold for strong edges

alpha threshold adjustment factor (default 1)

sigma smoothing

Value

Object of class ’cimg’, displaying detected edges.

References

https://CRAN.R-project.org/package=imager

Examples

edgeDetection(beads) |> plot()

8 fillLineGaps

fillLineGaps Reconnecting discontinuous lines

Description

The function attempts to fill in edge discontinuities in order to enable normal labeling and edge
detection.

Usage

fillLineGaps(
droplet.img,
bead.img = NULL,
threshold = "13%",
alpha = 0.75,
sigma = 0.1,
radius = 5,
iterations = 2,
visualize = TRUE

)

Arguments

droplet.img image that contains discontinuous lines like edges or contours

bead.img image that contains objects that should be removed before before applying the
fill algorithm

threshold "in %" (from threshold)

alpha threshold adjustment factor for edge detection (from cannyEdges)

sigma smoothing (from cannyEdges)

radius maximal radius that should be scanned for another cluster

iterations how many times the algorithm should find line ends and reconnect them to their
closest neighbor

visualize if TRUE (default) a plot is displayed highlighting the added pixels in the original
image

Details

The function pre-processes the image to enable the application of adaptiveInterpolation. Pre-
processing involves thresholding, optional object removal, LineEnd and diagonal LineEnd detec-
tion, and labeling. The threshold should be set to allow for some remaining "bridge" pixels between
gaps to facilitate reconnection. For more details about reconnection, please consult adaptiveInter-
polation. Post-processing involves thinning the lines. When removing objects from an image, their
coordinates are collected using the objectDetection function. Next, the pixels of the detected objects
are nullified in the original image, allowing the algorithm to proceed without the objects.

imgPipe 9

Value

image with continuous edges (closed gaps)

Examples

fillLineGaps(droplets)

imgPipe Image analysis pipeline

Description

This function serves as a pipeline that integrates tools for complete start-to-finish image analysis.
It enables the handling of images from different channels, including the analysis of dual-color mi-
crobeads. This approach simplifies the workflow, providing a straightforward method to analyze
complex image data.

Usage

imgPipe(
img1 = img,
color1 = "color1",
img2 = NULL,
color2 = "color2",
img3 = NULL,
color3 = "color3",
alpha = 1,
sigma = 2,
sizeFilter = TRUE,
upperlimit = "auto",
lowerlimit = "auto",
proximityFilter = TRUE,
radius = "auto",
parallel = FALSE

)

Arguments

img1 image (import by load.image)

color1 name of color in img1

img2 image (import by load.image)

color2 name of color in img2

img3 image (import by load.image)

color3 name of color in img3

alpha threshold adjustment factor

10 interactive_objectDetection

sigma smoothing

sizeFilter applying sizeFilter function (default - TRUE)

upperlimit highest accepted object size (only needed if sizeFilter = TRUE)

lowerlimit smallest accepted object size (when ’auto’ both limits are calculated by using
the mean and the standard deviation)

proximityFilter

applying proximityFilter function (default - TRUE)

radius distance from one center in which no other centers are allowed (in pixels)

parallel if TRUE uses multiple cores (75 %) to process results

Value

list of 3 to 4 objects:

1. summary of all the microbeads in the image

2. detailed information about every single bead

3. (optional) result for every individual color

4. unfiltered coordinates of img1

Examples

result <- imgPipe(beads,
alpha = 1, sigma = 2, upperlimit = 150,
lowerlimit = 50
)

plot(beads)
with(

result$detailed,
points(
result$detailed$x,
result$detailed$y,
col = "darkgreen",
pch = 19
)

)

interactive_objectDetection

Interactive object detection

Description

This function uses the objectDetection function to visualize the detected objects at varying threshold
an smoothing parameters.

interpolatePixels 11

Usage

interactive_objectDetection(img, resolution = 0.1, return_param = FALSE)

Arguments

img image (preferred import: load.image)

resolution resolution of slider

return_param used to define the final parameter values for alpha and sigma printed in the con-
sole (TRUE or FALSE).

Value

values of alpha and sigma

References

https://CRAN.R-project.org/package=magickGUI

Examples

if (interactive()) {
interactive_objectDetection(beads)

}

interpolatePixels Pixel Interpolation

Description

Connects two points in a matrix, array, or an image.

Usage

interpolatePixels(row1, col1, row2, col2)

Arguments

row1 first row: together with col1 coordinate for the first point

col1 first column: together with row1 coordinate for the first point

row2 second row: together with col2 coordinate for the second point

col2 second column: together with row2 coordinate for the second point

Value

matrix containing the coordinates to connect the two input points

12 objectDetection

Examples

test <- matrix(0, 4, 4)
test[1, 1] <- 1
test[3, 4] <- 1
link <- interpolatePixels(1, 1, 3, 4)
test[link] <- 1

objectDetection Object detection

Description

This function identifies objects in an image using edge detection and labeling, gathering the coor-
dinates and centers of the identified objects. The edges of detected objects are then highlighted for
easy recognition.

Usage

objectDetection(img, alpha = 1, sigma = 2)

Arguments

img image (import by load.image)

alpha threshold adjustment factor

sigma smoothing

Value

list of 4 objects:

1. data frame of labeled region with the central coordinates

2. all coordinates that are in labeled regions

3. size of labeled objects

4. image were object edges (purple) and detected centers (green) are colored

Examples

res_objectDetection <- objectDetection(beads, alpha = 1, sigma = 2)
res_objectDetection$marked_beads |> plot()

proximityFilter 13

proximityFilter Proximity-based exclusion

Description

To detect objects within a defined range of one another, it is necessary to calculate their centers to
determine proximity. Pairs that are too close will be discarded. (Input can be obtained by objectDe-
tection function)

Usage

proximityFilter(centers, coordinates, radius = "auto")

Arguments

centers center coordinates of objects (mx|my|value data frame)

coordinates all coordinates of the objects (x|y|value data frame)

radius distance from one center in which no other centers are allowed (in pixels)

Value

list of 3 objects:

1. center coordinates of remaining objects

2. all coordinates of remaining objects

3. size of remaining objects

Examples

res_objectDetection <- objectDetection(beads, alpha = 1, sigma = 2)
res_proximityFilter <- proximityFilter(

res_objectDetection$centers,
res_objectDetection$coordinates,
radius = "auto"
)

changePixelColor(
beads,
res_proximityFilter$coordinates,
color = "darkgreen",
visualize = TRUE
)

14 resultAnalytics

resultAnalytics Image Summary

Description

Extracts all important information of the remaining microbeads. This function summarizes the data
obtained by previous functions: objectDetection, proximityFilter and sizeFilter. Provides informa-
tion like amount, intensity, size and density.

Usage

resultAnalytics(unfiltered, coordinates, size, img, parallel = FALSE)

Arguments

unfiltered all coordinates from every object before applying filter functions

coordinates all filtered coordinates of the objects (x|y|value data frame)

size size of the objects

img image (import by load.image)

parallel if TRUE uses multiple cores (75 %) to process results

Value

list of 2 objects:

1. summary of all the microbeads in the image

2. detailed information about every single bead

Examples

res_objectDetection <- objectDetection(beads, alpha = 1, sigma = 2)
res_sizeFilter <- sizeFilter(

res_objectDetection$centers,
res_objectDetection$coordinates,
lowerlimit = 50, upperlimit = 150
)

res_proximityFilter <- proximityFilter(
res_sizeFilter$centers,
res_objectDetection$coordinates,
radius = "auto"
)

res_resultAnalytics <- resultAnalytics(
unfiltered = res_objectDetection$coordinates,
coordinates = res_proximityFilter$coordinates,
size = res_proximityFilter$size,
img = beads
)

plot(beads)

sizeFilter 15

with(
res_objectDetection$centers,
points(
res_objectDetection$centers$mx,
res_objectDetection$centers$my,
col = "red",
pch = 19
)

)
with(

res_resultAnalytics$detailed,
points(

res_resultAnalytics$detailed$x,
res_resultAnalytics$detailed$y,
col = "darkgreen",
pch = 19
)

)

sizeFilter Size-based exclusion

Description

Calculates the size of the objects in an image and discards objects based on a lower and an upper
size limit. (Input can be obtained by objectDetection function)

Usage

sizeFilter(centers, coordinates, lowerlimit = "auto", upperlimit = "auto")

Arguments

centers center coordinates of objects (needs to include ’value’ representing the center
number)

coordinates all coordinates of the objects (x|y|value data frame)

lowerlimit smallest accepted object size (when ’auto’ both limits are calculated by using
the mean and the standard deviation)

upperlimit highest accepted object size

Value

list of 3 objects:

1. remaining centers after discarding according to size

2. remaining coordinates after discarding according to size

3. size of remaining objects

16 sizeFilter

Examples

res_objectDetection <- objectDetection(beads, alpha = 1, sigma = 2)
res_sizeFilter <- sizeFilter(

centers = res_objectDetection$centers,
coordinates = res_objectDetection$coordinates,
lowerlimit = 50, upperlimit = 150
)

changePixelColor(
beads,
res_sizeFilter$coordinates,
color = "darkgreen",
visualize = TRUE
)

Index

∗ datasets
beads, 4
droplet_beads, 6
droplets, 5

adaptiveInterpolation, 2

beads, 4

cannyEdges, 7, 8
changePixelColor, 5
colors, 5

droplet_beads, 6
droplets, 5

edgeDetection, 7

fillLineGaps, 8

image_morphology, 2
imager.combine, 3
imgPipe, 9
interactive_objectDetection, 10
interpolatePixels, 11

load.image, 5, 9, 11, 12, 14

objectDetection, 12

proximityFilter, 13

resultAnalytics, 14

sizeFilter, 15

threshold, 8

17

	adaptiveInterpolation
	beads
	changePixelColor
	droplets
	droplet_beads
	edgeDetection
	fillLineGaps
	imgPipe
	interactive_objectDetection
	interpolatePixels
	objectDetection
	proximityFilter
	resultAnalytics
	sizeFilter
	Index

