Type: | Package |
Title: | Bayesian Methods for State Space Models |
Version: | 0.6.1 |
Description: | Implements methods for Bayesian analysis of State Space Models. Includes implementations of the Particle Marginal Metropolis-Hastings algorithm described in Andrieu et al. (2010) <doi:10.1111/j.1467-9868.2009.00736.x> and automatic tuning inspired by Pitt et al. (2012) <doi:10.1016/j.jeconom.2012.06.004> and J. Dahlin and T. B. Schön (2019) <doi:10.18637/jss.v088.c02>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | MASS, stats, dplyr, future, future.apply, lifecycle, Rcpp |
LinkingTo: | Rcpp |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), ggplot2, tidyr, extraDistr, rlang, expm |
Config/testthat/edition: | 3 |
URL: | https://github.com/BjarkeHautop/bayesSSM, https://bjarkehautop.github.io/bayesSSM/ |
BugReports: | https://github.com/BjarkeHautop/bayesSSM/issues |
VignetteBuilder: | knitr |
Config/Needs/website: | rmarkdown |
NeedsCompilation: | yes |
Packaged: | 2025-06-23 10:22:36 UTC; bjark |
Author: | Bjarke Hautop [aut, cre, cph] |
Maintainer: | Bjarke Hautop <bjarke.hautop@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-06-23 10:40:06 UTC |
Internal function to back-transform parameters
Description
Internal function to back-transform parameters
Usage
.back_transform_params(theta_trans, transform)
Arguments
theta_trans |
transformed parameter vector |
transform |
transformation type for each parameter |
Value
original parameter vector
Helper function to validate input of user-defined functions and priors
Description
Helper function to validate input of user-defined functions and priors
Usage
.check_params_match(
init_fn,
transition_fn,
log_likelihood_fn,
pilot_init_params,
log_priors
)
Arguments
init_fn |
A function to initialize the state-space model. |
transition_fn |
A function that defines the state transition of the state-space model. |
log_likelihood_fn |
A function that calculates the log-likelihood for the state-space model given latent states. |
pilot_init_params |
A vector of initial parameter values. |
log_priors |
A list of functions for computing the log-prior of each parameter. |
Internal function to compute the Jacobian of the transformation
Description
Internal function to compute the Jacobian of the transformation
Usage
.compute_log_jacobian(theta, transform)
Arguments
theta |
parameter vector (on original scale) |
transform |
transformation type for each parameter |
Value
log-Jacobian of the transformation
Internal function to transform parameters
Description
Internal function to transform parameters
Usage
.transform_params(theta, transform)
Arguments
theta |
parameter vector |
transform |
transformation type for each parameter |
Value
transformed parameter vector
Create Tuning Control Parameters
Description
This function creates a list of tuning parameters used by the
pmmh
function. The tuning choices are inspired by Pitt et al.
[2012] and Dahlin and Schön [2019].
Usage
default_tune_control(
pilot_proposal_sd = 0.5,
pilot_n = 100,
pilot_m = 2000,
pilot_target_var = 1,
pilot_burn_in = 500,
pilot_reps = 100,
pilot_algorithm = c("SISAR", "SISR", "SIS"),
pilot_resample_fn = c("stratified", "systematic", "multinomial")
)
Arguments
pilot_proposal_sd |
Standard deviation for pilot proposals. Default is 0.5. |
pilot_n |
Number of pilot particles for particle filter. Default is 100. |
pilot_m |
Number of iterations for MCMC. Default is 2000. |
pilot_target_var |
The target variance for the posterior log-likelihood evaluated at estimated posterior mean. Default is 1. |
pilot_burn_in |
Number of burn-in iterations for MCMC. Default is 500. |
pilot_reps |
Number of times a particle filter is run. Default is 100. |
pilot_algorithm |
The algorithm used for the pilot particle filter. Default is "SISAR". |
pilot_resample_fn |
The resampling function used for the pilot particle filter. Default is "stratified". |
Value
A list of tuning control parameters.
References
M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2):134–151, 2012. doi: https://doi.org/10.1016/j.jeconom.2012.06.004
J. Dahlin and T. B. Schön. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models. Journal of Statistical Software, 88(2):1–41, 2019. doi: 10.18637/jss.v088.c02
Estimate effective sample size (ESS) of MCMC chains.
Description
Estimate effective sample size (ESS) of MCMC chains.
Usage
ess(chains)
Arguments
chains |
A matrix (iterations x chains) or a data.frame with a 'chain' column and parameter columns. |
Details
Uses the formula for ESS proposed by Vehtari et al. (2021).
Value
The estimated effective sample size (ess) if given a matrix, or a named vector of ESS values if given a data frame.
References
Vehtari et al. (2021). Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of MCMC. Available at: https://doi.org/10.1214/20-BA1221
Examples
# With a matrix:
chains <- matrix(rnorm(3000), nrow = 1000, ncol = 3)
ess(chains)
# With a data frame:
chains_df <- data.frame(
chain = rep(1:3, each = 1000),
param1 = rnorm(3000),
param2 = rnorm(3000)
)
ess(chains_df)
Particle Filter
Description
This function implements a bootstrap particle filter for estimating the hidden states in a state space model using sequential Monte Carlo methods. Three filtering variants are supported:
-
SIS: Sequential Importance Sampling (without resampling).
-
SISR: Sequential Importance Sampling with resampling at every time step.
-
SISAR: SIS with adaptive resampling based on the Effective Sample Size (ESS). Resampling is triggered when the ESS falls below a given threshold (default
particles / 2
).
It is recommended to use either SISR or SISAR to avoid weight degeneracy.
Usage
particle_filter(
y,
num_particles,
init_fn,
transition_fn,
log_likelihood_fn,
obs_times = NULL,
algorithm = c("SISAR", "SISR", "SIS"),
resample_fn = c("stratified", "systematic", "multinomial"),
threshold = NULL,
return_particles = TRUE,
...
)
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations not equally spaced, use the
|
num_particles |
A positive integer specifying the number of particles. |
init_fn |
A function that initializes the particle states. It should take 'num_particles' as an argument for initializing the particles and return a vector or matrix of initial particle states. It can include any model-specific parameters as named arguments. |
transition_fn |
A function describing the state transition model. It should take 'particles' as an argument and return the propagated particles. The function can optionally depend on time by including a time step argument 't'. It can include any model-specific parameters as named arguments. |
log_likelihood_fn |
A function that computes the log-likelihoods for the particles. It should take a 'y' argument for the observations, the current particles, and return a numeric vector of log-likelihood values. The function can optionally depend on time by including a time step argument 't'. It can include any model-specific parameters as named arguments. |
obs_times |
A numeric vector indicating the time points at which
observations in |
algorithm |
A character string specifying the particle filtering
algorithm to use. Must be one of |
resample_fn |
A character string specifying the resampling method.
Must be one of |
threshold |
A numeric value specifying the ESS threshold for triggering
resampling in the |
return_particles |
A logical value indicating whether to return the full
particle history. Defaults to |
... |
Additional arguments passed to |
Details
The particle filter is a sequential Monte Carlo method that approximates the posterior distribution of the state in a state space model. The three supported algorithms differ in their approach to resampling:
-
SIS: Particles are propagated and weighted without any resampling, which may lead to weight degeneracy over time.
-
SISR: Resampling is performed at every time step to combat weight degeneracy.
-
SISAR: Resampling is performed adaptively; particles are resampled only when the Effective Sample Size (ESS) falls below a specified threshold (defaulting to
particles / 2
).
The Effective Sample Size (ESS) in context of particle filters is defined as
ESS = \left(\sum_{i=1}^{\text{n}} w_i^2\right)^{-1},
where n
is the number of particles and w_i
are the
normalized weights of the particles.
The default resampling method is stratified resampling, as Douc et al., 2005 showed that it always gives a lower variance compared to multinomial resampling.
Value
A list containing:
- state_est
A numeric vector of estimated states over time, computed as the weighted average of particles.
- ess
A numeric vector of the Effective Sample Size (ESS) at each time step.
- loglike
The accumulated log-likelihood of the observations given the model.
- loglike_history
A numeric vector of the log-likelihood at each time step.
- algorithm
A character string indicating the filtering algorithm used.
- particles_history
(Optional) A matrix of particle states over time, with dimension
(num_obs + 1) x num_particles
. Returned ifreturn_particles
isTRUE
.- weights_history
(Optional) A matrix of particle weights over time, with dimension
(num_obs + 1) x num_particles
. Returned ifreturn_particles
isTRUE
.
References
Douc, R., Cappé, O., & Moulines, E. (2005). Comparison of Resampling Schemes for Particle Filtering. Accessible at: https://arxiv.org/abs/cs/0507025
Examples
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles) particles + rnorm(length(particles))
log_likelihood_fn <- function(y, particles) {
dnorm(y, mean = particles, sd = 1, log = TRUE)
}
y <- cumsum(rnorm(50)) # dummy data
num_particles <- 100
# Run the particle filter using default settings.
result <- particle_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn
)
plot(result$state_est, type = "l", col = "blue", main = "State Estimates",
ylim = range(c(result$state_est, y)))
points(y, col = "red", pch = 20)
# With parameters
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
y <- cumsum(rnorm(50)) # dummy data
num_particles <- 100
# Run the particle filter using default settings.
result <- particle_filter(
y = y,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
mu = 1,
sigma = 1
)
plot(result$state_est, type = "l", col = "blue", main = "State Estimates",
ylim = range(c(result$state_est, y)))
points(y, col = "red", pch = 20)
# With observations gaps
init_fn <- function(num_particles) rnorm(num_particles, 0, 1)
transition_fn <- function(particles, mu) {
particles + rnorm(length(particles), mean = mu)
}
log_likelihood_fn <- function(y, particles, sigma) {
dnorm(y, mean = particles, sd = sigma, log = TRUE)
}
# Generate data using DGP
simulate_ssm <- function(num_steps, mu, sigma) {
x <- numeric(num_steps)
y <- numeric(num_steps)
x[1] <- rnorm(1, mean = 0, sd = sigma)
y[1] <- rnorm(1, mean = x[1], sd = sigma)
for (t in 2:num_steps) {
x[t] <- mu * x[t - 1] + sin(x[t - 1]) + rnorm(1, mean = 0, sd = sigma)
y[t] <- x[t] + rnorm(1, mean = 0, sd = sigma)
}
y
}
data <- simulate_ssm(10, mu = 1, sigma = 1)
# Suppose we have data for t=1,2,3,5,6,7,8,9,10 (i.e., missing at t=4)
obs_times <- c(1, 2, 3, 5, 6, 7, 8, 9, 10)
data_obs <- data[obs_times]
num_particles <- 100
# Run the particle filter
# Specify observation times in the particle filter using obs_times
result <- particle_filter(
y = data_obs,
num_particles = num_particles,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
obs_times = obs_times,
mu = 1,
sigma = 1,
)
plot(result$state_est, type = "l", col = "blue", main = "State Estimates",
ylim = range(c(result$state_est, data)))
points(data_obs, col = "red", pch = 20)
Particle Marginal Metropolis-Hastings (PMMH) for State-Space Models
Description
This function implements a Particle Marginal Metropolis-Hastings (PMMH) algorithm to perform Bayesian inference in state-space models. It first runs a pilot chain to tune the proposal distribution and the number of particles for the particle filter, and then runs the main PMMH chain.
Usage
pmmh(
y,
m,
init_fn,
transition_fn,
log_likelihood_fn,
log_priors,
pilot_init_params,
burn_in,
num_chains = 4,
obs_times = NULL,
algorithm = c("SISAR", "SISR", "SIS"),
resample_fn = c("stratified", "systematic", "multinomial"),
param_transform = NULL,
tune_control = default_tune_control(),
verbose = FALSE,
return_latent_state_est = FALSE,
seed = NULL,
num_cores = 1
)
Arguments
y |
A numeric vector or matrix of observations. Each row represents an
observation at a time step. If observations not equally spaced, use the
|
m |
An integer specifying the total number of MCMC iterations. |
init_fn |
A function that initializes the particle states. It should take 'num_particles' as an argument for initializing the particles and return a vector or matrix of initial particle states. It can include any model-specific parameters as named arguments. |
transition_fn |
A function describing the state transition model. It should take 'particles' as an argument and return the propagated particles. The function can optionally depend on time by including a time step argument 't'. It can include any model-specific parameters as named arguments. |
log_likelihood_fn |
A function that computes the log-likelihoods for the particles. It should take a 'y' argument for the observations, the current particles, and return a numeric vector of log-likelihood values. The function can optionally depend on time by including a time step argument 't'. It can include any model-specific parameters as named arguments. |
log_priors |
A list of functions for computing the log-prior of each parameter. |
pilot_init_params |
A list of initial parameter values. Should be a list
of length |
burn_in |
An integer indicating the number of initial MCMC iterations to discard as burn-in. |
num_chains |
An integer specifying the number of PMMH chains to run. |
obs_times |
A numeric vector indicating the time points at which
observations in |
algorithm |
A character string specifying the particle filtering
algorithm to use. Must be one of |
resample_fn |
A character string specifying the resampling method.
Must be one of |
param_transform |
An optional character vector that specifies the
transformation applied to each parameter before proposing. The proposal is
made using a multivariate normal distribution on the transformed scale.
Parameters are then mapped back to their original scale before evaluation.
Currently supports |
tune_control |
A list of pilot tuning controls
(e.g., |
verbose |
A logical value indicating whether to print information about
pilot_run tuning. Defaults to |
return_latent_state_est |
A logical value indicating whether to return
the latent state estimates for each time step. Defaults to |
seed |
An optional integer to set the seed for reproducibility. |
num_cores |
An integer specifying the number of cores to use for
parallel processing. Defaults to 1. Each chain is assigned to its own core,
so the number of cores cannot exceed the number of chains
( |
Details
The PMMH algorithm is essentially a Metropolis Hastings algorithm
where instead of using the intractable marginal likelihood
p(y_{1:T}\mid \theta)
it instead uses the estimated likelihood using
a particle filter (see also particle_filter
). Values are
proposed using a multivariate normal distribution in the transformed space.
The proposal covariance and the number of particles is chosen based on a
pilot run. The minimum number of particles is chosen as 50 and maximum as
1000.
Value
A list containing:
theta_chain
A dataframe of post burn-in parameter samples.
latent_state_chain
If
return_latent_state_est
isTRUE
, a list of matrices containing the latent state estimates for each time step.diagnostics
Diagnostics containing ESS and Rhat for each parameter (see
ess
andrhat
for documentation).
References
Andrieu et al. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342. doi: 10.1111/j.1467-9868.2009.00736.x
Examples
init_fn <- function(num_particles) {
rnorm(num_particles, mean = 0, sd = 1)
}
transition_fn <- function(particles, phi, sigma_x) {
phi * particles + sin(particles) +
rnorm(length(particles), mean = 0, sd = sigma_x)
}
log_likelihood_fn <- function(y, particles, sigma_y) {
dnorm(y, mean = cos(particles), sd = sigma_y, log = TRUE)
}
log_prior_phi <- function(phi) {
dnorm(phi, mean = 0, sd = 1, log = TRUE)
}
log_prior_sigma_x <- function(sigma) {
dexp(sigma, rate = 1, log = TRUE)
}
log_prior_sigma_y <- function(sigma) {
dexp(sigma, rate = 1, log = TRUE)
}
log_priors <- list(
phi = log_prior_phi,
sigma_x = log_prior_sigma_x,
sigma_y = log_prior_sigma_y
)
# Generate data
t_val <- 10
x <- numeric(t_val)
y <- numeric(t_val)
phi <- 0.8
sigma_x <- 1
sigma_y <- 0.5
init_state <- rnorm(1, mean = 0, sd = 1)
x[1] <- phi * init_state + sin(init_state) + rnorm(1, mean = 0, sd = sigma_x)
y[1] <- x[1] + rnorm(1, mean = 0, sd = sigma_y)
for (t in 2:t_val) {
x[t] <- phi * x[t - 1] + sin(x[t - 1]) + rnorm(1, mean = 0, sd = sigma_x)
y[t] <- cos(x[t]) + rnorm(1, mean = 0, sd = sigma_y)
}
x <- c(init_state, x)
# Should use much higher MCMC iterations in practice (m)
pmmh_result <- pmmh(
y = y,
m = 1000,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
log_priors = log_priors,
pilot_init_params = list(
c(phi = 0.8, sigma_x = 1, sigma_y = 0.5),
c(phi = 1, sigma_x = 0.5, sigma_y = 1)
),
burn_in = 100,
num_chains = 2,
param_transform = list(
phi = "identity",
sigma_x = "log",
sigma_y = "log"
),
tune_control = default_tune_control(pilot_m = 500, pilot_burn_in = 100)
)
# Convergence warning is expected with such low MCMC iterations.
# Suppose we have data for t=1,2,3,5,6,7,8,9,10 (i.e., missing at t=4)
obs_times <- c(1, 2, 3, 5, 6, 7, 8, 9, 10)
y <- y[obs_times]
# Specify observation times in the pmmh using obs_times
pmmh_result <- pmmh(
y = y,
m = 1000,
init_fn = init_fn,
transition_fn = transition_fn,
log_likelihood_fn = log_likelihood_fn,
log_priors = log_priors,
pilot_init_params = list(
c(phi = 0.8, sigma_x = 1, sigma_y = 0.5),
c(phi = 1, sigma_x = 0.5, sigma_y = 1)
),
burn_in = 100,
num_chains = 2,
obs_times = obs_times,
param_transform = list(
phi = "identity",
sigma_x = "log",
sigma_y = "log"
),
tune_control = default_tune_control(pilot_m = 500, pilot_burn_in = 100)
)
Print method for PMMH output
Description
Displays a concise summary of parameter estimates from a PMMH output object, including means, standard deviations, medians, 95% credible intervals, effective sample sizes (ESS), and Rhat. This provides a quick overview of the posterior distribution and convergence diagnostics.
Usage
## S3 method for class 'pmmh_output'
print(x, ...)
Arguments
x |
An object of class 'pmmh_output'. |
... |
Additional arguments. |
Value
The object 'x' invisibly.
Examples
# Create dummy chains for two parameters across two chains
chain1 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 1)
chain2 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 2)
dummy_output <- list(
theta_chain = rbind(chain1, chain2),
diagnostics = list(
ess = c(param1 = 200, param2 = 190),
rhat = c(param1 = 1.01, param2 = 1.00)
)
)
class(dummy_output) <- "pmmh_output"
print(dummy_output)
Compute split Rhat statistic
Description
Compute split Rhat statistic
Usage
rhat(chains)
Arguments
chains |
A matrix (iterations x chains) or a data.frame with a 'chain' column and parameter columns. |
Details
Uses the formula for split-Rhat proposed by Gelman et al. (2013).
Value
Rhat value (matrix input) or named vector of Rhat values.
References
Gelman et al. (2013). Bayesian Data Analysis, 3rd Edition.
Examples
# Example with matrix
chains <- matrix(rnorm(3000), nrow = 1000, ncol = 3)
rhat(chains)
#' # Example with data frame
chains_df <- data.frame(
chain = rep(1:3, each = 1000),
param1 = rnorm(3000),
param2 = rnorm(3000)
)
rhat(chains_df)
Summary method for PMMH output
Description
This function returns summary statistics for PMMH output objects, including means, standard deviations, medians, credible intervals, and diagnostics.
Usage
## S3 method for class 'pmmh_output'
summary(object, ...)
Arguments
object |
An object of class 'pmmh_output'. |
... |
Additional arguments. |
Value
A data frame containing summary statistics for each parameter.
Examples
# Create dummy chains for two parameters across two chains
chain1 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 1)
chain2 <- data.frame(param1 = rnorm(100), param2 = rnorm(100), chain = 2)
dummy_output <- list(
theta_chain = rbind(chain1, chain2),
diagnostics = list(
ess = c(param1 = 200, param2 = 190),
rhat = c(param1 = 1.01, param2 = 1.00)
)
)
class(dummy_output) <- "pmmh_output"
summary(dummy_output)