
Package ‘bases’
May 29, 2025

Title Basis Expansions for Regression Modeling

Version 0.1.2

Description Provides various basis expansions for flexible regression modeling,
including random Fourier features (Rahimi & Recht, 2007)
<https://proceedings.neurips.cc/paper_files/paper/2007/file/
013a006f03dbc5392effeb8f18fda755-Paper.pdf>,
exact kernel / Gaussian process feature maps, Bayesian Additive Regression
Trees (BART) (Chipman et al., 2010) <doi:10.1214/09-AOAS285> prior features,
and a helpful interface for n-way interactions. The provided functions may
be used within any modeling formula, allowing the use of kernel methods and
other basis expansions in modeling functions that do not otherwise support
them. Along with the basis expansions, a number of kernel functions are also
provided, which support kernel arithmetic to form new kernels. Basic ridge
regression functionality is included as well.

Depends R (>= 3.6.0)

Imports rlang, stats

Suggests recipes, tibble, testthat (>= 3.0.0), knitr, rmarkdown

LinkingTo cpp11

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

URL https://corymccartan.com/bases/,

https://github.com/CoryMcCartan/bases/

BugReports https://github.com/CoryMcCartan/bases/issues

NeedsCompilation yes

Author Cory McCartan [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-6251-669X>)

Maintainer Cory McCartan <mccartan@psu.edu>

1

https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://doi.org/10.1214/09-AOAS285
https://corymccartan.com/bases/
https://github.com/CoryMcCartan/bases/
https://github.com/CoryMcCartan/bases/issues
https://orcid.org/0000-0002-6251-669X

2 b_bart

Repository CRAN

Date/Publication 2025-05-29 19:40:27 UTC

Contents
b_bart . 2
b_inter . 4
b_ker . 5
b_rff . 6
kernel-arith . 8
kernels . 9
ridge . 10
step_basis . 11

Index 14

b_bart Bayesian Additive Regression Tree (BART) features

Description

Generates random features from a BART prior on symmetric trees. Equivalently, the features are
the interaction of a small number of indicator functions. The number of interacted indicators is
the depth of the symmetric tree, and is drawn from a prior on the tree depth which is calibrated
to match the traditional BART prior of Chipman et al. (2010). The variable at each tree node is
selected uniformly, and thresholds are selected uniformly from the range of each variable.

Usage

b_bart(
...,
trees = 100,
depths = bart_depth_prior()(trees),
vars = NULL,
thresh = NULL,
drop = NULL,
ranges = NULL

)

bart_depth_prior(mean_depth = 1.25)

Arguments

... The variable(s) to build features for. A single data frame or matrix may be
provided as well. Missing values are not allowed.

trees The number of trees to sample.

b_bart 3

depths The depths of each tree. By default, these are drawn from a Poisson distribution
calibrated to produce trees with around 2.5 leaves, on average, matching the
traditional BART prior.

vars Integer indices of the variables to use for each tree. If provided, overrides those
generated automatically by sampling uniformly from the available input fea-
tures. Provided in flat form, so should have length equal to sum(depths).

thresh The thresholds for each variable. If provided, overrides those generated au-
tomatically by sampling uniformly from ranges, which defaults to the range
of each input feature. Provided in flat form, so should have length equal to
sum(depths).

drop Columns in the calculated indicator matrix to drop. By default, any leaves which
match zero input rows are dropped. If provided, overrides this default.

ranges The range of the input features, provided as a matrix with two rows and a column
for each input feature. The first row is the minimum and the second row is the
maximum.

mean_depth The mean prior depth of each tree, where a single node has depth zero and a
two-leaf tree has depth 1. This value minus one becomes the rate parameter of a
Poisson distribution, whose samples are then shifted up by one. In this way, no
zero-depth trees (which produce trivial features) are sampled.

Value

A matrix of indicator variables encoding the random features.

Functions

• bart_depth_prior(): Poisson depth prior for random trees, parametrized in terms of mean
tree depth. Returns a function which generates samples from the prior with argument giving
the number of samples. The default prior closely matches the average number of leaves in the
original (asymmetric) BART prior.

References

Hugh A. Chipman. Edward I. George. Robert E. McCulloch. "BART: Bayesian additive regression
trees." Ann. Appl. Stat. 4 (1) 266 - 298, March 2010. https://doi.org/10.1214/09-AOAS285

Examples

X = with(mtcars, b_bart(cyl, disp, hp, drat, wt, trees = 50))
all(colSums(X) > 0) # TRUE; empty leaves are pruned away
each row belongs to 1 leaf node per tree; some trees pruned away
all(rowSums(X) == rowSums(X)[1]) # TRUE
all(rowSums(X) <= 50) # TRUE

x = 1:150
y = as.numeric(BJsales)
m = ridge(y ~ b_bart(x, trees=25))
plot(x, y)
lines(x, fitted(m), type="s", col="blue")

4 b_inter

b_inter N-way interaction basis

Description

Generates a design matrix that contains all possible interactions of the input variables up to a spec-
ified maximum depth. The default "symbox" standardization, which maps inputs to [−0.5, 0.5]d, is
strongly recommended, as it means that the interaction terms will have smaller variance and thus be
penalized more by methods like the Lasso or ridge regression (see Gelman et al., 2008).

Usage

b_inter(
...,
depth = 2,
stdize = c("symbox", "box", "scale", "none"),
shift = NULL,
scale = NULL

)

Arguments

... The variable(s) to build features for. A single data frame or matrix may be
provided as well. Missing values are not allowed.

depth The maximum interaction depth. The default is 2, which means that all pairwise
interactions are included.

stdize How to standardize the predictors, if at all. The default "scale" applies scale()
to the input so that the features have mean zero and unit variance, "box" scales
the data along each dimension to lie in the unit hypercube, and "symbox" scales
the data along each dimension to lie in [−0.5, 0.5]d.

shift Vector of shifts, or single shift value, to use. If provided, overrides those calcu-
lated according to stdize.

scale Vector of scales, or single scale value, to use. If provided, overrides those cal-
culated according to stdize.

Value

A matrix with the rescaled and interacted features.

References

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y. S. (2008). A weakly informative default prior
distribution for logistic and other regression models.

b_ker 5

Examples

default: all pairwise interactions
lm(mpg ~ b_inter(cyl, hp, wt), mtcars)

how number of features depends on interaction depth
for (d in 2:6) {

X = with(mtcars, b_inter(cyl, disp, hp, drat, wt, depth=d))
print(ncol(X))

}

b_ker Exact kernel feature basis

Description

Generates a design matrix that exactly represents a provided kernel, so that the Gram matrix is equal
to the kernel matrix. The feature map is

ϕ(x′) = K−1/2
x,x kx,x′ ,

where Kx,x is the kernel matrix for the data points x and kx,x′ is the vector of kernel function
evaluations at the data points and the new value. While exact, this function is not particularly com-
putationally efficient. Both fitting and prediction require backsolving the Cholesky decomposition
of the kernel matrix for the original data points.

Usage

b_ker(
...,
kernel = k_rbf(),
stdize = c("scale", "box", "symbox", "none"),
x = NULL,
shift = NULL,
scale = NULL

)

Arguments

... The variable(s) to build features for. A single data frame or matrix may be
provided as well. Missing values are not allowed.

kernel A kernel function. If one of the recognized kernel functions such as k_rbf() is
provided, then the computations will be exact. Otherwise, the fast Fourier trans-
form of the provided kernel function is used to generate the random features.
The kernel should be shift-invariant and decay to zero at positive and negative
infinity.

6 b_rff

stdize How to standardize the predictors, if at all. The default "scale" applies scale()
to the input so that the features have mean zero and unit variance, "box" scales
the data along each dimension to lie in the unit hypercube, and "symbox" scales
the data along each dimension to lie in [−0.5, 0.5]d.

x The (training) data points at which to evaluate the kernel. If provided, overrides
....

shift Vector of shifts, or single shift value, to use. If provided, overrides those calcu-
lated according to stdize.

scale Vector of scales, or single scale value, to use. If provided, overrides those cal-
culated according to stdize.

Value

A matrix of kernel features.

Examples

data(quakes)

exact kernel ridge regression
k = k_rbf(0.1)
m = ridge(depth ~ b_ker(lat, long, kernel = k), quakes)
cor(fitted(m), quakes$depth)^2

Forecasting example involving combined kernels
data(AirPassengers)
x = seq(1949, 1961 - 1/12, 1/12)
y = as.numeric(AirPassengers)
x_pred = seq(1961 - 1/2, 1965, 1/12)

k = k_per(scale = 0.2, period = 1) * k_rbf(scale = 4)
m = ridge(y ~ b_ker(x, kernel = k, stdize="none"))
plot(x, y, type='l', xlab="Year", ylab="Passengers (thousands)",

xlim=c(1949, 1965), ylim=c(100, 800))
lines(x_pred, predict(m, newdata = list(x = x_pred)), lty="dashed")

b_rff Random Fourier feature basis

Description

Generates a random Fourier feature basis matrix for a provided kernel, optionally rescaling the data
to lie in the unit hypercube. A good review of random features is the Liu et al. (2021) review paper
cited below. Random features here are of the form

ϕ(x) = cos(ωTx+ b),

where ω is a vector of frequencies sampled from the Fourier transform of the kernel, and b ∼
Unif[−π, π] is a random phase shift. The input data x may be shifted and rescaled before the
feature mapping is applied, according to the stdize argument.

b_rff 7

Usage

b_rff(
...,
p = 100,
kernel = k_rbf(),
stdize = c("scale", "box", "symbox", "none"),
n_approx = nextn(4 * p),
freqs = NULL,
phases = NULL,
shift = NULL,
scale = NULL

)

Arguments

... The variable(s) to build features for. A single data frame or matrix may be
provided as well. Missing values are not allowed.

p The number of random features.

kernel A kernel function. If one of the recognized kernel functions such as k_rbf() is
provided, then the computations will be exact. Otherwise, the fast Fourier trans-
form of the provided kernel function is used to generate the random features.
The kernel should be shift-invariant and decay to zero at positive and negative
infinity.

stdize How to standardize the predictors, if at all. The default "scale" applies scale()
to the input so that the features have mean zero and unit variance, "box" scales
the data along each dimension to lie in the unit hypercube, and "symbox" scales
the data along each dimension to lie in [−0.5, 0.5]d.

n_approx The number of discrete frequencies to use in calculating the Fourier transform of
the provided kernel. Not used for certain kernels for which an analytic Fourier
transform is available; see above.

freqs Matrix of frequencies to use; ncol(freqs) must match the number of predic-
tors. If provided, overrides those calculated automatically, thus ignoring p and
kernel.

phases Vector of phase shifts to use. If provided, overrides those calculated automati-
cally, thus ignoring p and kernel.

shift Vector of shifts, or single shift value, to use. If provided, overrides those calcu-
lated according to stdize.

scale Vector of scales, or single scale value, to use. If provided, overrides those cal-
culated according to stdize.

Details

To reduce the variance of the approximation, a moment-matching transformation is applied to en-
sure the sampled frequencies have mean zero, per Shen et al. (2017). For the Gaussian/RBF kernel,
second moment-matching is also applied to ensure the analytical and empirical frequency covari-
ance matrices agree.

8 kernel-arith

Value

A matrix of random Fourier features.

References

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 20.

Liu, F., Huang, X., Chen, Y., & Suykens, J. A. (2021). Random features for kernel approximation:
A survey on algorithms, theory, and beyond. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10), 7128-7148.

Shen, W., Yang, Z., & Wang, J. (2017, February). Random features for shift-invariant kernels with
moment matching. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No.
1).

Examples

data(quakes)

m = ridge(depth ~ b_rff(lat, long), quakes)
plot(fitted(m), quakes$depth)

more random featues means a higher ridge penalty
m500 = ridge(depth ~ b_rff(lat, long, p = 500), quakes)
c(default = m$penalty, p500 = m500$penalty)

A shorter length scale fits the data better (R^2)
m_025 = ridge(depth ~ b_rff(lat, long, kernel = k_rbf(scale = 0.25)), quakes)
c(

len_1 = cor(quakes$depth, fitted(m))^2,
len_025 = cor(quakes$depth, fitted(m_025))^2

)

kernel-arith Kernel arithmetic

Description

Kernel functions (see ?kernels) may be multiplied by constants, multiplied by each other, or added
together.

Usage

S3 method for class 'kernel'
x * k2

S3 method for class 'kernel'
k1 + k2

kernels 9

Arguments

x a numeric or a kernel function
k2 a kernel function
k1 a kernel function

Value

A new kernel function, with class c("kernel", "function").

Examples

x = seq(-1, 1, 0.5)
k = k_rbf()
k2 = k_per(scale=0.2, period=0.3)

k_add = k2 + 0.5*k
print(k_add)
image(k_add(x, x))

kernels Kernel functions

Description

These functions return vectorized kernel functions that can be used to calculate kernel matrices, or
provided directly to other basis functions. These functions are designed to take a maximum value
of one when identical inputs are provided. Kernels can be combined with arithmetic expressions;
see ?kernel-arith.

Usage

k_rbf(scale = 1)

k_lapl(scale = 1)

k_rq(scale = 1, alpha = 2)

k_matern(scale = 1, nu = 1.5)

k_per(scale = 1, period = 1)

Arguments

scale The kernel length scale.
alpha The shape/df parameter. α = 1 is the Cauchy kernel.
nu The smoothness parameter. ν = 0.5 is the Ornstein–Uhlenbeck kernel.
period The period, in the same units as scale.

10 ridge

Value

A function which calculates a kernel matrix for vector arguments x and y. The function has class
c("kernel", "function").

Functions

• k_rbf(): Radial basis function kernel

• k_lapl(): Laplace kernel

• k_rq(): Rational quadratic kernel.

• k_matern(): Matérn kernel.

• k_per(): Periodic (exp-sine-squared) kernel.

Examples

k = k_rbf()
x = seq(-1, 1, 0.5)
k(0, 0)
k(0, x)
k(x, x)

k = k_per(scale=0.2, period=0.3)
round(k(x, x))

ridge Ridge regression

Description

Lightweight routine for ridge regression, fitted via a singular value decomposition. The penalty may
be automatically determined by leave-one-out cross validation. The intercept term is unpenalized.

Usage

ridge(formula, data, penalty = "auto", ...)

S3 method for class 'ridge'
fitted(object, ...)

S3 method for class 'ridge'
coef(object, ...)

S3 method for class 'ridge'
predict(object, newdata, ...)

step_basis 11

Arguments

formula A model formula; see formula. The intercept term is unpenalized; to fit a penal-
ized intercept, remove the intercept and add your own to the design matrix.

data An optional data frame or object in which to interpret the variables occurring in
formula.

penalty The ridge penalty. Must be a single numeric or the string "auto", in which case
the penalty will be determined via leave-one-out cross validation to minimize
the mean squared error.

... Further arguments, passed on to model.frame() and model.matrix(). These
must be provided to predict.ridge() as well, if used.

object A fitted ridge() model.

newdata A data frame containing the new data to predict

Value

An object of class ridge with components including:

• coef, a vector of coefficients.

• fitted, a vector of fitted values.

• penalty, the penalty value.

Methods (by generic)

• fitted(ridge): Fitted values

• coef(ridge): Coefficients

• predict(ridge): Predicted values

Examples

m_lm = lm(mpg ~ ., mtcars)
m_ridge = ridge(mpg ~ ., mtcars, penalty=1e3)
plot(fitted(m_lm), fitted(m_ridge), ylim=c(10, 30))
abline(a=0, b=1, col="red")

step_basis Recipe step for basis expansions

Description

step_basis() is a single function that creates a specification of a recipe step that will create new
columns that are basis expansions, using any of the basis expansion functions in this package.

12 step_basis

Usage

step_basis(
recipe,
...,
role = NA,
trained = FALSE,
fn = NULL,
options = list(),
object = NULL,
prefix = deparse(substitute(fn)),
skip = FALSE,
id = recipes::rand_id("basis")

)

Arguments

recipe A recipe object.

... One or more selector functions to choose variables for this step. See recipes::selections()
for more details.

role For model terms created by this step, what analysis role should they be assigned?
By default, the new columns created by this step from the original variables will
be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

fn The basis function to use, e.g., b_rff().

options A list of options for the basis function fn.

object The basis object created once the step has been trained.

prefix The prefix to use for the new column names. Numbers will be appended, per
recipes::names0(), to create column names.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake()?

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Tuning Parameters

There are no tuning parameters made available to the tunable interface.

Case Weights

The underlying operation does not use case weights.

step_basis 13

Examples

rec = recipes::recipe(depth ~ lat + long + mag, quakes)
rec_rff = step_basis(rec, lat, long, fn = b_rff,

options = list(p = 5, kernel = k_rbf(2), stdize="none"))
recipes::bake(recipes::prep(rec_rff), new_data=NULL)

Index

∗ interfaces
step_basis, 11

∗ kernels
kernel-arith, 8
kernels, 9

*.kernel (kernel-arith), 8
+.kernel (kernel-arith), 8
?kernels, 8

b_bart, 2
b_inter, 4
b_ker, 5
b_rff, 6
b_rff(), 12
bart_depth_prior (b_bart), 2

coef.ridge (ridge), 10

fitted.ridge (ridge), 10
formula, 11

k_lapl (kernels), 9
k_matern (kernels), 9
k_per (kernels), 9
k_rbf (kernels), 9
k_rbf(), 5, 7
k_rq (kernels), 9
kernel-arith, 8
kernels, 9

model.frame(), 11
model.matrix(), 11

predict.ridge (ridge), 10
predict.ridge(), 11

recipes::bake(), 12
recipes::names0(), 12
recipes::selections(), 12
ridge, 10
ridge(), 11

step_basis, 11

14

	b_bart
	b_inter
	b_ker
	b_rff
	kernel-arith
	kernels
	ridge
	step_basis
	Index

