## ----fig.width = 7, fig.height = 3.5------------------------------------------ library(anomo) myci <- mcci(d = c(.1, .15), se = c(.01, .01)) # Note. Effect difference (the black square representing d1 - d2), 90% MCCI # (the thick horizontal line) for the test of equivalence, and 95% MCCI # (the thin horizontal line) for the test of moderation # (or difference in effects). ## ----------------------------------------------------------------------------- # Adjust the plot myci <- mcci(d = c(.1, .15), se = c(.01, .01), eq.bd = c(-0.2, 0.2), xlim = c(-.2, .7)) ## ----fig.width = 7, fig.height = 3.5------------------------------------------ MyCI.Mediation <- mcci(d = c(.60, .40, .60, .80), se = c(.019, .025, .016, .023), mediation = TRUE) #Note. The order of d is a1, b1, a2, and b2 (e.g., treatment-mediator # and mediator-outcome path in group/study 1 and 2, respectively). # se is in the same order for the standard errors. ## ----conventional.power.analysis---------------------------------------------- # 1. Conventional Power Analyses from Difference Perspectives # Calculate the required sample size to achieve certain level of power mysample <- power.1.eq(d = .1, eq.dis = 0.1, p =.5, r12 = .5, q = 1, power = .8) mysample$out # Calculate power provided by a sample size allocation mypower <- power.1.eq(d = 0.1, eq.dis = 0.1, n = 1238, p =.5, r12 = .5, q = 1) mypower$out # Calculate minimum detectable distance a given sample size allocation can achieve myeq.dis <- power.1.eq(d = .1, n = 1238, p =.5, r12 = .5, q = 1, power = .8) myeq.dis$out ## ----power.analysis.with.costs------------------------------------------------ # 2. Power Analyses Using Optimal Sample Allocation # Optimal sample allocation identification od <- od.1.eq(r12 = 0.5, c1 = 1, c1t = 10) # Required budget and sample size at the optimal allocation budget <- power.1.eq(expr = od, d = 0.1, eq.dis = 0.1, power = .8) # Required budget and sample size by an balanced design with p = .50 budget.balanced <- power.1.eq(expr = od, d = 0.1, eq.dis = 0.1, power = .8, constraint = list(p = .50)) # 27% more budget required from the balanced design with p = 0.50. (budget.balanced$out$m-budget$out$m)/budget$out$m *100 ## ----power.curve-------------------------------------------------------------- plot.power.eq(expr = od, d = 0.1, eq.dis = 0.1)