

Package ‘alsi’

February 17, 2026

Type Package

Title Aggregated Latent Space Index for Multiple Correspondence Analysis

Version 0.1.2

Description Tools for stability-validated aggregation in multiple correspondence analysis (MCA). Implements parallel analysis for dimensionality assessment, bootstrap-based subspace stability diagnostics using Procrustes rotation and Tucker's congruence coefficients, and computation of the Aggregated Latent Space Index (ALSI). ALSI is a person-level summary measure derived from validated MCA dimensions that quantifies departure from independence along stable association directions in multivariate categorical data.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 4.0.0)

Imports stats, graphics, utils

Suggests readxl, openxlsx

RoxygenNote 7.2.0

NeedsCompilation no

Author Se-Kang Kim [aut, cre]

Maintainer Se-Kang Kim <se-kang.kim@bcm.edu>

Repository CRAN

Date/Publication 2026-02-17 16:00:02 UTC

Contents

alsi	2
alsi_workflow	3
ANR2	4
mca_align	5
mca_bootstrap	5

mca_pa	6
plot_category_projections	7
plot_subspace_stability	8

Index

9

alsi	<i>Compute Aggregated Latent Space Index (ALSI)</i>
------	---

Description

Calculates ALSI as a variance-weighted Euclidean norm of row principal coordinates within a retained K-dimensional MCA subspace.

Usage

```
alsi(Fmat, eig, K)
```

Arguments

Fmat	Matrix of row principal coordinates ($N \times K$ or larger)
eig	Vector of eigenvalues (inertias)
K	Integer, number of dimensions to aggregate

Value

S3 object of class `alsi` containing:

alpha	Numeric vector of ALSI values (length N), representing each individual's variance-weighted distance from the centroid in the retained MCA subspace
w	Variance weights (length K), computed as the proportion of retained inertia for each dimension
alpha_vec	Aggregated direction vector (length K), equal to <code>sqrt(w)</code> , used for projecting category coordinates
K	Number of dimensions used in aggregation

Examples

```
# Create example data
set.seed(123)
Fmat <- matrix(rnorm(100 * 4), nrow = 100, ncol = 4)
eig <- c(0.5, 0.3, 0.15, 0.05)

# Compute ALSI
a <- alsi(Fmat, eig, K = 3)
print(a)
hist(a$alpha, main = "Distribution of ALSI")
```

alsi_workflow *Example workflow using the ALSI package*

Description

Example workflow using the ALSI package

Usage

```
alsi_workflow(  
  path,  
  vars,  
  B_pa = 2000,  
  B_boot = 2000,  
  q = 0.95,  
  seed = 20260123  
)
```

Arguments

path	Path to data file (.xlsx) or data frame
vars	Character vector of binary variable names
B_pa	Number of permutations for parallel analysis
B_boot	Number of bootstrap resamples
q	Quantile for parallel analysis
seed	Random seed

Value

List containing all analysis objects

Examples

```
# Complete workflow  
results <- alsi_workflow(  
  path = "ANR2.xlsx",  
  vars = c("MDD", "DYS", "DEP", "PTSD", "OCD", "GAD", "ANX", "SOPH", "ADHD"),  
  B_pa = 2000,  
  B_boot = 2000  
)  
  
# Access components  
results$pa      # Parallel analysis  
results$boot    # Bootstrap stability  
results$alsi    # ALSI values
```

ANR2

*Example Eating Disorder Diagnostic Data***Description**

Individual-level binary diagnostic data for eating disorder patients, including nine psychiatric diagnoses and pre/post treatment measures.

Usage

ANR2

Format

A data frame with 1261 rows and 13 variables:

MDD Major Depressive Disorder (0 = absent, 1 = present)
DYS Dysthymia (0 = absent, 1 = present)
DEP Depression (0 = absent, 1 = present)
PTSD Post-Traumatic Stress Disorder (0 = absent, 1 = present)
OCD Obsessive-Compulsive Disorder (0 = absent, 1 = present)
GAD Generalized Anxiety Disorder (0 = absent, 1 = present)
ANX Anxiety (0 = absent, 1 = present)
SOPH Social Phobia (0 = absent, 1 = present)
ADHD Attention-Deficit/Hyperactivity Disorder (0 = absent, 1 = present)
pre_bmi Pre-treatment Body Mass Index (numeric)
post_bmi Post-treatment Body Mass Index (numeric)
pre_EDI Pre-treatment Eating Disorder Inventory score (numeric)
post_EDI Post-treatment Eating Disorder Inventory score (numeric)

Source

Baylor College of Medicine eating disorder treatment program data. Data have been de-identified and anonymized for research purposes.

Examples

```
data(ANR2)

# Examine structure
str(ANR2)

# View diagnostic variables
vars <- c("MDD", "DYS", "DEP", "PTSD", "OCD", "GAD", "ANX", "SOPH", "ADHD")
head(ANR2[, vars])
```

```
# Check prevalence of diagnoses
colMeans(ANR2[, vars], na.rm = TRUE)
```

mca_align*Align MCA solution via Procrustes rotation with sign anchoring*

Description

Align MCA solution via Procrustes rotation with sign anchoring

Usage

```
mca_align(G, Gref)
```

Arguments

G	Matrix of category coordinates to align
Gref	Reference matrix of category coordinates

Value

List with aligned coordinates and rotation matrix

mca_bootstrap*Bootstrap-Based Subspace Stability Assessment*

Description

Evaluates reproducibility of retained MCA dimensions via bootstrap resampling. Quantifies stability using Procrustes principal angles (subspace-level) and Tucker's congruence coefficients (dimension-level).

Usage

```
mca_bootstrap(data, vars, K, B = 2000, seed = 20260123, verbose = TRUE)
```

Arguments

data	Data frame or path to .xlsx file
vars	Character vector of binary variable names
K	Integer, number of dimensions to retain and assess
B	Integer, number of bootstrap resamples (default: 2000)
seed	Integer, random seed for reproducibility
verbose	Logical, print progress messages

Value

S3 object of class `mca_bootstrap` containing:

<code>ref</code>	Reference MCA fit
<code>K</code>	Number of dimensions assessed
<code>B</code>	Number of bootstrap resamples
<code>angles</code>	Matrix of principal angles ($B \times K$)
<code>tucker</code>	Matrix of Tucker congruence coefficients ($B \times K$)
<code>angles_summary</code>	Summary statistics for angles
<code>tucker_summary</code>	Summary statistics for congruence

Examples

```
data(ANR2)
boot <- mca_bootstrap(ANR2, vars = names(ANR2), K = 3, B = 100)
print(boot)
plot(boot)
```

Description

Compares observed MCA eigenvalues against reference distributions from permuted data to identify statistically meaningful dimensions.

Usage

```
mca_pa(
  data,
  vars,
  B = 2000,
  q = 0.95,
  seed = 20260123,
  max_dims = 20,
  verbose = TRUE
)
```

Arguments

<code>data</code>	Data frame or path to .xlsx file
<code>vars</code>	Character vector of binary variable names
<code>B</code>	Integer, number of permutations (default: 2000)
<code>q</code>	Numeric, reference quantile for retention (default: 0.95)

seed	Integer, random seed for reproducibility
max_dims	Integer, maximum dimensions to display in plot
verbose	Logical, print progress messages

Value

S3 object of class `mca_pa` containing:

<code>eig_obs</code>	Observed eigenvalues from the MCA of the original data
<code>eig_q</code>	Reference quantiles from permutation distribution
<code>eig_perm</code>	Matrix of permutation eigenvalues (B x dimensions)
<code>K_star</code>	Suggested number of dimensions to retain (where observed > reference)
<code>fit</code>	MCA fit object (class <code>mca_fit</code>) from original data
<code>q</code>	Quantile threshold used for comparison
<code>B</code>	Number of permutations performed

Examples

```
# Using included ANR2 dataset
data(ANR2)
pa <- mca_pa(ANR2, vars = names(ANR2), B = 100)
print(pa$K_star)
```

plot_category_projections

Plot Category Projections in MCA Space

Description

Visualizes category coordinates in a 2D MCA subspace and optionally displays projections onto the aggregated ALSI direction.

Usage

```
plot_category_projections(
  fit,
  K,
  alpha_vec = NULL,
  dim_pair = c(1, 2),
  cex = 0.8,
  top_n = 15
)
```

Arguments

fit	MCA fit object (class <code>mca_fit</code>)
K	Number of dimensions in retained subspace
alpha_vec	Optional aggregated direction vector (from <code>alsi()</code>)
dim_pair	Integer vector of length 2, dimensions to plot (default: <code>c(1,2)</code>)
cex	Character expansion for labels
top_n	Number of top categories to display by projection (default: 15)

Value

No return value, called for side effects. The function creates a scatter plot of category coordinates in the specified 2D subspace, with category labels displayed. If `alpha_vec` is provided, it also prints the top categories ranked by their absolute projection onto the ALSI direction to the console.

plot_subspace_stability

Plot Subspace Stability Diagnostics

Description

Creates diagnostic plots showing distributions of principal angles and Tucker congruence coefficients across bootstrap resamples.

Usage

`plot_subspace_stability(boot_obj)`

Arguments

boot_obj	Object of class <code>mca_bootstrap</code>
----------	--

Value

No return value, called for side effects. The function creates a two-panel figure with: (1) boxplots of principal angles (left panel), showing the distribution of subspace similarity across bootstrap resamples for each dimension; and (2) boxplots of Tucker congruence coefficients (right panel), showing dimension-level replicability with reference lines at $\phi = 0.85$ (good) and $\phi = 0.95$ (excellent).

Index

* datasets

ANR2, [4](#)

alsi, [2](#)

alsi_workflow, [3](#)

ANR2, [4](#)

mca_align, [5](#)

mca_bootstrap, [5](#)

mca_pa, [6](#)

plot_category_projections, [7](#)

plot_subspace_stability, [8](#)