## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Load required packages library(alakazam) # Load example data data(ExampleDb) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Partitions the data based on the sample column clones <- countClones(ExampleDb, group="sample_id") head(clones, 5) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Partitions the data based on both the sample_id and c_call columns # Weights the clone sizes by the duplicate_count column clones <- countClones(ExampleDb, group=c("sample_id", "c_call"), copy="duplicate_count", clone="clone_id") head(clones, 5) ## ----eval=TRUE, results='hide', warning=FALSE, fig.width=6, fig.height=4------ # Partitions the data on the sample column # Calculates a 95% confidence interval via 200 bootstrap realizations curve <- estimateAbundance(ExampleDb, group="sample_id", ci=0.95, nboot=100, clone="clone_id") ## ----eval=TRUE, warning=FALSE, fig.width=6, fig.height=4---------------------- # Plots a rank abundance curve of the relative clonal abundances sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(curve, colors = sample_colors, legend_title="Sample") ## ----eval=TRUE, results='hide'------------------------------------------------ # Compare diversity curve across values in the "sample" column # q ranges from 0 (min_q=0) to 4 (max_q=4) in 0.05 increments (step_q=0.05) # A 95% confidence interval will be calculated (ci=0.95) # 200 resampling realizations are performed (nboot=200) sample_curve <- alphaDiversity(ExampleDb, group="sample_id", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) # Compare diversity curve across values in the c_call column # Analyse is restricted to c_call values with at least 30 sequences by min_n=30 # Excluded groups are indicated by a warning message isotype_curve <- alphaDiversity(ExampleDb, group="c_call", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) ## ----eval=TRUE, fig.width=6, fig.height=4------------------------------------- # Plot a log-log (log_q=TRUE, log_d=TRUE) plot of sample diversity # Indicate number of sequences resampled from each group in the title sample_main <- paste0("Sample diversity") sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(sample_curve, colors=sample_colors, main_title=sample_main, legend_title="Sample") # Plot isotype diversity using default set of Ig isotype colors isotype_main <- paste0("Isotype diversity") plot(isotype_curve, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") ## ----eval=TRUE, fig.width=6, fig.height=3------------------------------------- # Test diversity at q=0, q=1 and q=2 (equivalent to species richness, Shannon entropy, # Simpson's index) across values in the sample_id column # 200 bootstrap realizations are performed (nboot=200) isotype_test <- alphaDiversity(ExampleDb, group="c_call", min_q=0, max_q=2, step_q=1, nboot=100, clone="clone_id") # Print P-value table print(isotype_test@tests) # Plot results at q=0 and q=2 # Plot the mean and standard deviations at q=0 and q=2 plot(isotype_test, 0, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") plot(isotype_test, 2, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype")