## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, warning=FALSE, comment = "#>", fig.width=8, fig.height=6 ) ## ----load2, echo=FALSE, eval=TRUE, message=FALSE------------------------------ if (!requireNamespace("airt", quietly = TRUE)) { stop("Package airt is needed for the vignette. Please install it.", call. = FALSE) } if (!requireNamespace("ggplot2", quietly = TRUE)) { stop("Package ggplot2 is needed for the vignette. Please install it.", call. = FALSE) } if (!requireNamespace("tidyr", quietly = TRUE)) { stop("Package tidyr is needed for the vignette. Please install it.", call. = FALSE) } if (!requireNamespace("gridExtra", quietly = TRUE)) { stop("Package gridExtra is needed for the vignette. Please install it.", call. = FALSE) } if (!requireNamespace("scales", quietly = TRUE)) { stop("Package scales is needed for the vignette. Please install it.", call. = FALSE) } ## ----load, message=FALSE------------------------------------------------------ library(airt) library(ggplot2) library(tidyr) library(gridExtra) ## ----example2----------------------------------------------------------------- data("classification_cts") df <- classification_cts head(df) ## ----classificationairt------------------------------------------------------- modout <- cirtmodel(df) ## ----irtparas----------------------------------------------------------------- paras <- modout$model$param paras ## ----airtparas---------------------------------------------------------------- ## ----heatmaps----------------------------------------------------------------- obj <- heatmaps_crm(modout) autoplot(obj) ## ----latenttrait-------------------------------------------------------------- obj <- latent_trait_analysis(df, modout$model$param, epsilon = 0 ) autoplot(obj, plottype = 1) ## ----latent2------------------------------------------------------------------ autoplot(obj, plottype = 2) ## ----latent3------------------------------------------------------------------ autoplot(obj, plottype = 3) ## ----lto---------------------------------------------------------------------- obj$strengths$proportions ## ----weaknesses--------------------------------------------------------------- obj$weakness$proportions ## ----latent4------------------------------------------------------------------ autoplot(obj, plottype = 4) ## ----latent5------------------------------------------------------------------ obj2 <- latent_trait_analysis(df, modout$model$param, epsilon = 0.02 ) autoplot(obj2, plottype = 4) ## ----modelgoodness------------------------------------------------------------ modelgood <- model_goodness_crm(modout) autoplot(modelgood) ## ----modelgoodness2----------------------------------------------------------- cbind.data.frame(AUC = modelgood$goodnessAUC, MSE = modelgood$mse) ## ----effectiveness1----------------------------------------------------------- modeleff <- effectiveness_crm(modout) autoplot(modeleff, plottype = 1) ## ----effectiveness2----------------------------------------------------------- autoplot(modeleff, plottype = 2) autoplot(modeleff, plottype = 3) ## ----example------------------------------------------------------------------ data("classification_poly") modout <- pirtmodel(classification_poly, vpara=FALSE) obj <- tracelines_poly(modout) autoplot(obj) ## ----poly2-------------------------------------------------------------------- cbind.data.frame(consistency = modout$consistency, anomalousness = modout$anomalous, difficulty_level = modout$difficulty_limit[, 1]) ## ---- goodnesspoly------------------------------------------------------------ modelgoodness <- model_goodness_poly(modout) autoplot(modelgoodness) ## ----effectivenesspoly-------------------------------------------------------- effpoly <- effectiveness_poly(modout) autoplot(effpoly, plottype = 3)