
Package ‘WALS’
November 3, 2023

Version 0.2.4

Date 2023-11-02

Title Weighted-Average Least Squares Model Averaging

Depends R (>= 4.0.0)

Imports Formula (>= 1.2-3), MASS (>= 7.3-51.6), methods, Rdpack(>=
2.1.3), stats

Suggests AER, BayesVarSel, BMS, testthat (>= 3.1.10)

Description Implements Weighted-Average Least Squares model averaging
for negative binomial regression models of Huynh (2023) (mimeo),
generalized linear models of De Luca, Magnus, Peracchi (2018)
<doi:10.1016/j.jeconom.2017.12.007> and linear regression models of
Magnus, Powell, Pruefer (2010) <doi:10.1016/j.jeconom.2009.07.004>, see also
Magnus, De Luca (2016) <doi:10.1111/joes.12094>. Weighted-Average Least Squares
for the linear regression model is based on the original 'MATLAB' code by
Magnus and De Luca <https://www.janmagnus.nl/items/WALS.pdf>, see also
Kumar, Magnus (2013) <doi:10.1007/s13571-013-0060-9> and
De Luca, Magnus (2011) <doi:10.1177/1536867X1201100402>.

License GPL-2 | GPL-3

URL https://github.com/kevhuy/WALS

BugReports https://github.com/kevhuy/WALS/issues

LazyData true

RdMacros Rdpack

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Kevin Huynh [aut, cre] (<https://orcid.org/0000-0002-4621-2274>)

Maintainer Kevin Huynh <Kevin.Huynh@unibas.ch>

Repository CRAN

Date/Publication 2023-11-03 07:20:06 UTC

1

https://doi.org/10.1016/j.jeconom.2017.12.007
https://doi.org/10.1016/j.jeconom.2009.07.004
https://doi.org/10.1111/joes.12094
https://www.janmagnus.nl/items/WALS.pdf
https://doi.org/10.1007/s13571-013-0060-9
https://doi.org/10.1177/1536867X1201100402
https://github.com/kevhuy/WALS
https://github.com/kevhuy/WALS/issues
https://orcid.org/0000-0002-4621-2274

2 checkSingularitySVD

R topics documented:
checkSingularitySVD . 2
computeGamma1 . 3
computeGamma1r . 4
computeGammaUnSVD . 6
computePosterior . 7
computeX2M1X2 . 8
controlGLM . 9
controlNB . 10
ddweibull . 11
dlaplace . 12
dsubbotin . 13
familyPrior . 14
familyWALS . 16
fitNB2 . 18
gammaToBeta . 20
GrowthMP . 21
GrowthMPP . 23
negativeBinomial . 24
predict.wals . 25
predict.walsGLM . 28
predictCounts . 32
semiorthogonalize . 34
snbinom . 35
svdLSplus . 36
vcov.walsNB . 37
wals . 37
walsFit . 41
walsGLM . 44
walsGLMfit . 48
walsGLMfitIterate . 50
walsNB . 52
walsNBfit . 56
walsNBfitIterate . 60

Index 63

checkSingularitySVD Internal function: Check singularity of SVDed matrix

Description

Checks whether matrix is singular based on singular values of SVD.

Usage

checkSingularitySVD(singularValues, tol, rtol, digits = 5)

computeGamma1 3

Arguments

singularValues Vector of singular values.

tol Absolute tolerance, singular if min(singularValues) < tol

rtol Relative tolerance, singular if min(singularValues) / max(singularValues)
< rtol

digits The number significant digits to show in case a warning is triggered by singu-
larity.

computeGamma1 Internal function: Compute model-averaged estimator of focus regres-
sors in walsNB

Description

Exploits the SVD of the design matrix of the focus regressors Z̄1, the model-averaged estimator
for the auxiliary regressors γ̂2 and the Sherman-Morrison-Woodbury formula for computing the
model-averaged estimator of the focus regressors in walsNB.

Usage

computeGamma1(
gamma2,
Z2start,
Z2,
U,
V,
singularVals,
ellStart,
gStart,
epsilonStart,
qStart,
y0Start,
tStart,
psiStart

)

Arguments

gamma2 Model-averaged estimate for auxiliary regressors from computePosterior.

Z2start Transformed design matrix of auxiliary regressors Z̄2. See details.

Z2 Another transformed design matrix of auxiliary regressors Z2. See details.

U Left singular vectors of Z̄1 from svd.

V Right singular vectors of Z̄1 from svd.

singularVals Singular values of Z̄1 from svd.

4 computeGamma1r

ellStart Vector ¯̀see details.

gStart Derivative of dispersion parameter ρ of NB2 with respect to α = log(ρ) eval-
uated at starting values of one-step ML. gStart is a scalar. See section "ML
estimation" of Huynh (2023a).

epsilonStart Scalar ε̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

qStart Vector q̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

y0Start Vector ȳ0, see section "One-step ML estimator" of Huynh (2023a) for definition.

tStart Scalar t̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

psiStart Diagonal matrix Ψ̄, see section "One-step ML estimator" of Huynh (2023a) for
definition.

Details

See section "Simplification for computing γ̂1" in the appendix of Huynh (2023b) for details of the
implementation and for the definitions of argument ellStart.

All parameters that contain "start" feature the starting values for the one-step ML estimation of
submodels. See section "One-step ML estimator" of Huynh (2023a) for details.

The argument Z2start is defined as (Huynh 2023a)

Z̄2 := X̄2∆̄2Ξ̄−1/2,

and Z2 is defined as

Z2 := X2∆̄2Ξ̄−1/2.

Uses svdLSplus under-the-hood.

References

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Univer-
sity of Basel. Mimeo.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” University
of Basel. Mimeo.

computeGamma1r Internal function: Computes fully restricted one-step ML estimator for
transformed regressors in walsNB

Description

Computes one-step ML estimator of fully restricted model (coefs of transformed regressors of Z̄1)
in walsNB by using SVD on transformed design matrix of the focus regressors Z̄1. The matrix Z̄1

should have full column rank.

computeGamma1r 5

Usage

computeGamma1r(
U,
V,
singularVals,
ellStart,
gStart,
epsilonStart,
qStart,
y0Start,
tStart,
psiStart

)

Arguments

U Left singular vectors of Z̄1 from svd.

V Right singular vectors of Z̄1 from svd.

singularVals Singular values of Z̄1 from svd.

ellStart Vector ¯̀see details.

gStart Derivative of dispersion parameter ρ of NB2 with respect to α = log(ρ) eval-
uated at starting values of one-step ML. gStart is a scalar. See section "ML
estimation" of Huynh (2023a).

epsilonStart Scalar ε̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

qStart Vector q̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

y0Start Vector ȳ0, see section "One-step ML estimator" of Huynh (2023a) for definition.

tStart Scalar t̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

psiStart Diagonal matrix Ψ̄, see section "One-step ML estimator" of Huynh (2023a) for
definition.

Details

See section "Simplification for computing γ̃1r" in the appendix of Huynh (2023b) for details of the
implementation and for the definitions of argument ellStart.

All parameters that contain "start" feature the starting values for the one-step ML estimation of
submodels. See section "One-step ML estimator" of Huynh (2023a) for details.

Uses svdLSplus under-the-hood.

References

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Univer-
sity of Basel. Mimeo.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” University
of Basel. Mimeo.

6 computeGammaUnSVD

computeGammaUnSVD Internal function: Computes unrestricted one-step ML estimator for
transformed regressors in walsNB

Description

Computes one-step ML estimator for the unrestricted model in walsNB (coefs of transformed re-
gressors Z̄) by using SVD on entire transformed design matrix Z̄. The matrix Z̄ should have full
column rank.

Usage

computeGammaUnSVD(
U,
V,
singularVals,
ellStart,
gStart,
epsilonStart,
qStart,
y0Start,
tStart,
psiStart

)

Arguments

U Left singular vectors of Z̄ or Z̄1 from svd.

V Right singular vectors of Z̄ or Z̄1 from svd.

singularVals Singular values of Z̄ or Z̄1 from svd.

ellStart Vector ¯̀see details.

gStart Derivative of dispersion parameter ρ of NB2 with respect to α = log(ρ) eval-
uated at starting values of one-step ML. gStart is a scalar. See section "ML
estimation" of Huynh (2023a).

epsilonStart Scalar ε̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

qStart Vector q̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

y0Start Vector ȳ0, see section "One-step ML estimator" of Huynh (2023a) for definition.

tStart Scalar t̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

psiStart Diagonal matrix Ψ̄, see section "One-step ML estimator" of Huynh (2023a) for
definition.

computePosterior 7

Details

See section "Simplification for computing γ̃u" in the appendix of Huynh (2023b) for details of the
implementation and for the definitions of argument ellStart.

All parameters that contain "start" feature the starting values for the one-step ML estimation of
submodels. See section "One-step ML estimator" of Huynh (2023a) for details.

Uses svdLSplus under-the-hood.

References

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Univer-
sity of Basel. Mimeo.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” University
of Basel. Mimeo.

computePosterior Internal function: Compute posterior mean and variance of normal
location problem

Description

Computes the posterior mean and variance of the normal location problem with fixed variance to 1,
i.e. x|γ ∼ N(γ, 1). The priors for γ are either weibull, subbotin or laplace. Their properties
are briefly discussed in Magnus and De Luca (2016). Default method of computePosterior uses
numerical integration. This is used for the weibull and subbotin priors. For the laplace prior
closed form expressions exist for the integrals. In the original MATLAB code, the Gauss-Kronrod
quadrature was used for numerical integration. Here we use the default integrate which combines
Gauss-Kronrod with Wynn’s Epsilon algorithm for extrapolation.

Usage

computePosterior(object, ...)

S3 method for class 'familyPrior'
computePosterior(object, x, ...)

S3 method for class 'familyPrior_laplace'
computePosterior(object, x, ...)

Arguments

object Object of class "familyPrior", e.g. from weibull, should contain all neces-
sary parameters needed for the posterior.

... Further arguments passed to methods.

x vector. Observed values, i.e. in WALS these are the regression coefficients of
the transformed regressor Z2 standardized by the standard deviation: γ2u/s.

8 computeX2M1X2

Details

See section "Numerical integration in Bayesian estimation step" in the appendix of Huynh (2023b)
for details.

computePosterior.familyPrior_laplace() is the specialized method for the S3 class "familyPrior_laplace"
and computes the posterior first and second moments of the normal location problem with a Laplace
prior using the analytical formula (without numerical integration). For more details, see De Luca et
al. (2020) and the original code of Magnus and De Luca.

References

De Luca G, Magnus JR, Peracchi F (2020). “Posterior moments and quantiles for the normal lo-
cation model with Laplace prior.” Communications in Statistics - Theory and Methods, 0(0), 1-11.
doi:10.1080/03610926.2019.1710756.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” Univer-
sity of Basel. Mimeo.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

Original MATLAB code on Jan Magnus’ website. https://www.janmagnus.nl/items/WALS.pdf

computeX2M1X2 Internal function: Computes X2M1X2 for walsNB when SVD is ap-
plied to Z1

Description

Exploits the SVD of Z̄1 to compute X̄>2 M̄1X̄2 to avoid directly inverting Z̄>1 Z̄1.

Usage

computeX2M1X2(
X2,
X2start,
qStart,
U,
UellStart,
ellStart,
psiStart,
gStart,
epsilonStart,
geB

)

https://doi.org/10.1080/03610926.2019.1710756
https://doi.org/10.1111/joes.12094
https://www.janmagnus.nl/items/WALS.pdf

controlGLM 9

Arguments

X2 Design matrix for auxiliary regressors

X2start Transformed design matrix for auxiliary regressors. Refers to X̄2 = Ψ̄1/2X2.

qStart Vector q̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

U U of SVD of Z1. See details.

UellStart Vector U ¯̀, see details.

ellStart Vector ¯̀see details.

psiStart Diagonal matrix Ψ̄, see section "One-step ML estimator" of Huynh (2023a) for
definition.

gStart Derivative of dispersion parameter ρ of NB2 with respect to α = log(ρ) eval-
uated at starting values of one-step ML. gStart is a scalar. See section "ML
estimation" of Huynh (2023a).

epsilonStart Scalar ε̄, see section "One-step ML estimator" of Huynh (2023a) for definition.

geB ḡε̄/(1 +B). In code gStart*epsilonStart / (1+B). See details for definition
of B. gStart is ḡ and epsilonStart is ε̄.

Details

See section "Simplification for computing X̄>2 M̄1X̄2" in the appendix of Huynh (2023b) for details
of the implementation and for the definitions of arguments Uellstart, ellStart, and geB.

All parameters that contain "start" feature the starting values for the one-step ML estimation of
submodels. See section "One-step ML estimator" of Huynh (2023a) for details.

References

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Univer-
sity of Basel. Mimeo.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” University
of Basel. Mimeo.

controlGLM Control function for initial GLM fit

Description

Defines controllable parameters of initial GLM fit in walsGLM.

Usage

controlGLM(restricted = FALSE, controlGLMfit = list())

10 controlNB

Arguments

restricted If TRUE, then initial fit in glm.fit only considers the focus regressors. By de-
fault FALSE, then the unrestricted model is estimated in glm.fit (i.e. all regres-
sors).

controlGLMfit List. Arguments to be passed to control argument of glm.fit. See also
glm.control.

Value

Returns a list containing the parameters specified in the arguments to be used in walsGLM (and
walsGLMfitIterate).

See Also

walsGLM, walsGLMfitIterate, glm.fit, glm.control.

Examples

data("HMDA", package = "AER")
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |

selfemp + afam, data = HMDA,
family = binomialWALS(),
prior = weibull(),
controlInitGLM = controlGLM(restricted = TRUE,

controlGLMfit = list(trace = TRUE)))

controlNB Control function for initial NB fit

Description

Defines controllable parameters of initial NB fit in walsNB.

Usage

controlNB(
start = list(mu = NULL, logTheta = NULL),
method = "BFGS",
controlOptim = list(maxit = 100),
initThetaMASS = FALSE,
initMASS = TRUE,
restricted = FALSE,
eps = .Machine$double.eps^0.25,
epsilonMASS = 1e-08

)

ddweibull 11

Arguments

start Optional starting values for fitNB2. Only used if initMASS = FALSE.

method Optimization method used in optim. Only used if initMASS = FALSE.

controlOptim List with parameters controlling optimization process of optim. Only used if
initMASS = FALSE.

initThetaMASS If TRUE, then initial log θ of fitNB2 is estimated using theta.ml (ML-estimation
over 1 variable) based on regression coefficients from Poisson regression. If
FALSE, then initial log θ = 0 is used.

initMASS If TRUE (default), then initial fit in fitNB2 is estimated via glm.nb and initThetaMASS
is ignored. If FALSE, then the initial fit is estimated by minimizing the log-
likelihood using optim.

restricted If TRUE, then initial fit in fitNB2 only considers the focus regressors. By default
FALSE, then the unrestricted model is estimated in fitNB2 (i.e. all regressors).

eps Controls argument eps in fitNB2 for generating starting value for logTheta
(log θ) via theta.ml.

epsilonMASS Sets epsilon in control argument of glm.nb.

Value

Returns a list containing the parameters specified in the arguments to be used in walsNB (and
walsNBfitIterate).

See Also

walsNB, walsNBfitIterate.

Examples

data("NMES1988", package = "AER")
walsNB(visits ~ health + chronic + age + gender | I((age^2)/10) +

married + region, data = NMES1988, prior = weibull(),
controlInitNB = controlNB(initMASS = FALSE, restricted = TRUE))

ddweibull Internal function: double (reflected) Weibull density

Description

Wrapper around dweibull to use the parametrization on pp. 131 of Magnus and De Luca (2016).

Usage

ddweibull(x, q, b, log = FALSE)

12 dlaplace

Arguments

x vector of quantiles.

q q in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

b c in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

log logical; if TRUE, probabilities p are given as log(p).

Details

The density function is
π(x) =

qc

2
|x|q−1 exp(−c|x|q).

Value

Gives the (log-)density.

References

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal of
Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

See Also

weibull, dweibull.

dlaplace Internal function: Laplace density

Description

Wrapper around dsubbotin with fixed q = 1. Uses the parametrization on pp. 131 of Magnus and
De Luca (2016).

Usage

dlaplace(x, b, log = FALSE)

Arguments

x vector of quantiles.

b c in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

log logical; if TRUE, probabilities p are given as log(p).

https://doi.org/10.1111/joes.12094

dsubbotin 13

Details

The density function is
π(x) =

c

2
exp(−c|x|).

Value

Gives the (log-)density.

References

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal of
Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

See Also

laplace, dsubbotin.

dsubbotin Internal function: Subbotin density

Description

Subbotin density, uses the parametrization on pp. 131 of Magnus and De Luca (2016). Also called
generalized normal distribution.

Usage

dsubbotin(x, q, b, log = FALSE)

Arguments

x vector of quantiles.

q q in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

b c in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

log logical; if TRUE, probabilities p are given as log(p).

Details

The density function is

π(x) =
qc1/q

2Γ(1/q)
exp(−c|x|q).

Value

Gives the (log-)density.

https://doi.org/10.1111/joes.12094

14 familyPrior

References

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal of
Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

See Also

subbotin.

familyPrior Family Objects for Prior Distributions in WALS

Description

"familyPrior" objects provide a convenient way to specify the prior distribution used for the
Bayesian posterior mean estimation of the WALS estimators in wals, walsGLM and walsNB

Usage

familyPrior(object, ...)

weibull(q = 0.887630085544086, b = log(2))

subbotin(q = 0.799512530172489, b = 0.937673273794677)

laplace(b = log(2))

S3 method for class 'familyPrior'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'wals'
familyPrior(object, ...)

Arguments

object, x Object of of class "familyPrior" or "wals". The function familyPrior()
accesses the "familyPrior" objects that are stored in objects of class "wals".

... Further arguments passed to methods.

q q in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

b c in Magnus and De Luca (2016). Parameter of reflected generalized gamma
distribution. See below for details.

digits The number of significant digits to display.

https://doi.org/10.1111/joes.12094

familyPrior 15

Details

familyPrior() is a generic function that extracts the family used in "wals" objects.

The density function of the reflected generalized gamma distribution is

π(x) =
qc(1−α)/q

2Γ((1− α)/q)
|x|−α exp(−c|x|q).

The double (reflected) Weibull, Subbotin and Laplace distributions are all special cases of the re-
flected generalized gamma distribution. The Laplace distribution is also a special case of the double
Weibull and of the Subbotin distribution.

The double (reflected) Weibull density sets q = 1 − α, the Subbotin density sets α = 0 and the
Laplace density sets α = 0 and q = 1.

The default values for the parameters q and b are minimax regret solutions for the corresponding
priors. The double (reflected) Weibull and Subbotin prior are both neutral and robust. In contrast,
the Laplace prior is only neutral but not robust. See section 9 "Enter Bayes: Neutrality and Robust-
ness" of Magnus and De Luca (2016) for details and Table 1 for the optimal parameter values.

Value

An object of class "familyPrior" to be used in wals, walsGLM and walsNB. This is a list with the
elements

q Parameter q.

alpha Parameter α (of the reflected generalized gamma distribution).

b Parameter c.

delta Parameter δ = (1− α)/q.

printPars vector. Contains the parameters that are shown in printing functions, e.g. print.familyPrior().

prior String with the name of the prior distribution.

laplace() returns an object of the specialized class "familyPrior_laplace" that inherits from
"familyPrior". This allows separate processing of the Laplace prior in the estimation functions
as closed-form formulas exists for its posterior mean and variance. The list elements are the same
as for objects of class "familyPrior".

References

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal of
Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

See Also

wals, walsGLM, walsNB, computePosterior, ddweibull, dsubbotin, dlaplace.

https://doi.org/10.1111/joes.12094

16 familyWALS

Examples

Use in wals():
fit <- wals(gdpgrowth ~ lgdp60 + equipinv + school60 + life60 + popgrowth |

law + tropics + avelf + confucian, data = GrowthMPP,
prior = weibull(q = 0.8, b = log(1.8)))

summary(fit)

familyWALS Extended Family Objects for Models

Description

Objects of class "familyWALS" inherit from "family" and extend those with (transformation) func-
tions required for walsGLM and walsNB.

Usage

familyWALS(object, ...)

poissonWALS(link = "log")

binomialWALS(link = "logit")

negbinFixedWALS(scale, link)

negbinWALS(scale, link)

S3 method for class 'walsGLM'
familyWALS(object, ...)

Arguments

object The function familyWALS() extracts the family objects stored in "walsGLM"
objects.

... Further arguments passed to methods.
The negbinWALS() family currently only accepts "log", while negbinFixedWALS()
supports both "log" and "canonical".

link Specifies the model link function. Typically a character string or an object of
class "link-glm" generated by make.link. See family for more details. Cur-
rently, only a limited number of links are supported. See below for more details.

scale dispersion parameter of NB2 to be used, always larger than 0.

familyWALS 17

Details

familyWALS() is a generic function that extracts the family used in "walsGLM" objects.

negbinFixedWALS() creates the "familyWALS" object for negative binomial distribution type 2
(NB2) with fixed dispersion parameter. It extends negativeBinomial.

negbinWALS() creates objects of the specialized class "familyNBWALS" which inherits from "familyWALS"
and "family". It constructs the "familyNBWALS" object for the negative binomial distribution type
2 (NB2) with variable dispersion parameter by extending negativeBinomial and negbinFixedWALS
with functions required in walsNB. negbinWALS should only be used in walsNBfit and not in
walsGLM because the NB2 with variable dispersion parameter is not a GLM!

Supported links:
Currently, binomialWALS() and poissonWALS() only support their canonical links, i.e. "logit"
and "log", respectively. negbinFixedWALS() supports both, the "canonical" link and the "log"
link, however, the first is not recommended due to numerical difficulties in the fitting process. In
contrast, negbinWALS() only supports the "log" link.

Value

An object of class "familyWALS" to be used in walsGLM that inherits from "family". This is a list
that contains elements returned from the corresponding family function that it extends. Additionally,
the following elements are available:

theta.eta function. Derivative of the canonical parameter θ with respect to the linear link
η, i.e. dθ/dη.

psi function. ψ defined on p. 3 of (De Luca et al. 2018).

initializeY function. Preprocesses the response, e.g. in binomialWALS() it transforms fac-
tors to numeric 0s and 1s.

transformY function. Transforms the response to ȳ. See eq. (5) in (De Luca et al. 2018) for
GLMs and (Huynh 2023a) for negbinWALS() used in walsNB.

transformX function. Transforms the regressors to X̄1 and X̄2, respectively. See eq. (5) in
(De Luca et al. 2018) for GLMs and (Huynh 2023a) for negbinWALS() used in
walsNB.

density function. The probability density/mass function of the family.

poissonWALS() and negbinFixedWALS() return objects of class "familyWALScount" that inherit
from "familyWALS" and "family". These are lists that contain the same elements as "familyWALS"
objects described above.

negbinWALS() creates an object of class "familyNBWALS" (only used internally in walsNB) that
inherits from "familyWALScount", "familyWALS" and "family". This is a list that contains
all elements returned from negbinFixed and the elements described above for objects of class
"familyWALS". Additionally contains the following elements with functions required in walsNB
that are described in (Huynh 2023a):

q function. Computes q̄.

g function. Computes ḡ.

transformY0 function. Computes ȳ0.

18 fitNB2

t function. Computes t̄.

epsilon function. Computes ε̄.

epsiloninv function. Computes ε̄−1.

kappaSum function. Computes κ̄>1.

computeAlpha function. Computes the log-dispersion parameter log(ρ) given (model-averaged)
estimates of the regression coefficients of the transformed regressors γ1 and γ2.

References

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Uni-
versity of Basel. Mimeo.

See Also

family, walsGLM.

Examples

Use in walsGLM():
data("NMES1988", package = "AER")
NMES1988 <- na.omit(NMES1988)
fitPoisson <- walsGLM(emergency ~ health + chronic + age + gender |

I((age^2)/10) + married + region, family = poissonWALS(),
data = NMES1988, prior = laplace())

summary(fitPoisson)

Plot derivatives of binomialWALS() with default 'logit' link:
bi <- binomialWALS()
plot(bi$mu.eta, from = -10, to = 10)
plot(bi$theta.eta, from = -10, to = 10) # constant. logit is canonical link

fitNB2 Internal function: Fits a NB2 regression via maximum likelihood with
log-link for mean and dispersion parameter.

Description

Internal fitting function for NB2 regression models. Used for fitting the starting values of the one-
step ML estimators in walsNB. Only works with log-link so far, no other links tested.

Usage

fitNB2(X, Y, family, control = controlNB())

https://doi.org/10.1016/j.jeconom.2017.12.007

fitNB2 19

Arguments

X Design matrix.

Y Count response vector.

family Object of class "familyNBWALS" generated by negbinWALS.

control List of parameters for controlling the optimization process. Use controlNB to
generate the list.

Details

The available parameters for controlling the optimization are documented in controlNB.

Value

A list with the following elements

coefficients fitted coefficients from NB2 regression

theta fitted dispersion parameter from NB2 regression

convergence 0 indicates successful completion. All error codes except for 99 are generated
by optim. Possible error codes are

1 indicates that the iteration limit maxit had been reached.

10 degeneracy of the Nelder-Mead simplex.

51 warning from "L-BFGS-B" method; see component message for further de-
tails.

52 error from "L-BFGS-B" method; see component message for further details.

99 (only possible if controlNB(initMASS = TRUE)) indicates convergence is-
sues in glm.nb.

ll log-likelihood of fitted NB2 regression model

message If controlNB(initMASS = FALSE), character string giving any additional infor-
mation returned by the optimizer, else NULL.

start If controlNB(initMASS = FALSE), contains a vector with the starting values
used for optim.

See Also

controlNB, negbinWALS, glm.nb, optim.

20 gammaToBeta

gammaToBeta Internal function: Transform gammas back to betas

Description

Transforms posterior means γ̂2 and variances corresponding to transformed auxiliary regressors Z2

back to regression coefficients β̂ of original regressors X1 and X2.

Usage

gammaToBeta(
posterior,
y,
Z1,
Z2,
Delta1,
D2,
sigma,
Z1inv,
method = "original",
svdZ1

)

Arguments

posterior Object returned from computePosterior.

y Response y.

Z1 Transformed focus regressors Z1.

Z2 Transformed auxiliary regressors Z1.

Delta1 ∆1 or ∆̄1.

D2 From semiorthogonalize, if postmult = FALSE was used, then D2 = ∆2TΛ−1/2,
where T are the eigenvectors of Ξ and Λ the diagonal matrix containing the cor-
responding eigenvalues. If postmult = TRUE was used, then D2 = ∆2TΛ−1/2T> =
∆2Ξ−1/2.

sigma Prespecified or estimated standard deviation of the error term.

Z1inv (Z>1 Z1)−1.

method Character. γ̂1 is obtained from a linear regression of Z1 on pseudo-responses
y − Z2γ̂2. If method = original, then we use lm.fit to perform the linear
regression, if method = "svd", then reuse the SVD of Z1 in svdZ1 to perform
the regression.

svdZ1 Optional, only needed if method = "svd". SVD of Z1 computed using svd.

GrowthMP 21

Details

The same transformations also work for GLMs, where we replace X1, X2, Z1 and Z2 with X̄1, X̄2,
Z̄1 and Z̄2, respectively. Generally, we need to replace all variables with their corresponding "bar"
version. Further, for GLMs sigma is always 1.

See Magnus and De Luca (2016), De Luca et al. (2018) and Huynh (2023b) for the definitions of
the variables.

References

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” Univer-
sity of Basel. Mimeo.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

GrowthMP Determinants of Economic Growth

Description

Growth regression data used in Masanjala and Papageorgiou (2008).

Usage

GrowthMP

Format

A data frame with 37 observations on 25 variables:

gdpgrowth Average growth rate of GDP per capita from 1960 - 1992 at purchasing power parity.

lgdp60 Logarithm of GDP per capita in 1960.

yrsopen Fraction of years economy open from 1960 - 1990.

mining Fraction of GDP in mining.

primexp70 Share of exports of primary products in GDP in 1970.

invest Ratio of real domestic investment (public and private) to real GDP.

rerd Real exchange rate distortion.

school60 Average years of primary schooling for population over 25 years of age in 1960.

life60 Life expectancy at age 0 in 1960.

popgrowth Average growth rate of population from 1960 - 1990.

war factor. "yes" if country participates in at least one external war from 1960 to 1985. "no" else.

https://doi.org/10.1016/j.jeconom.2017.12.007
https://doi.org/10.1111/joes.12094

22 GrowthMP

revcoup Average number of revolutions and coups per year from 1960 - 1990.
rights Index of political rights ranging from 1 (most restrictive) to 7 (most freedom)
civil Index of civil liberties ranging from 1 (most restrictive) to 7 (most freedom)
out Index of outward orientation.
capitalism Degree of capitalism.
colony factor. Shows if the country used to be "british" or "french" colony. If neither of them

applies, then "none".
english Fraction of English speakers.
foreign Fraction speaking foreign language.
frac Probability that two random people are from different ethnolinguistic groups.
protestant Fraction of population Protestant.
catholic Fraction of population Catholic.
muslim Fraction of population Muslim.
area Size of country in millions of square kilometers.
abslat Distance from the equator.

Details

The dataset of Masanjala and Papageorgiou (2008) is a subset of sub-Sahara African countries from
the data used in Sala-I-Martin (1997). See Table A2. in Masanjala and Papageorgiou (2008) for
the original sources of the variables. This dataset is also used for replication purposes in Amini and
Parmeter (2012).
To replicate the WALS estimates in Amini and Parmeter (2012), use all variables except for a con-
stant as auxiliary regressors and divide all regressors by their in-sample maximum before running
wals(..., prescale = FALSE) (NOTE: It is not recommended to use prescale = FALSE as this
runs an old version of the WALS estimator, prescale = FALSE should only be used for replica-
tion purposes). The resulting coefficients and standard errors have to be divided by the maximum
of the regressors again to get the values presented in Table I of the paper.

Source

Journal of Applied Econometrics Data Archive. The data was taken from the archive entry of
Amini and Parmeter (2012) for replication purposes but they can also be found in the archive entry
of Masanjala and Papageorgiou (2008).
https://journaldata.zbw.eu/dataset/comparison-of-model-averaging-techniques-assessing-growth-determinants

References

Amini SM, Parmeter CF (2012). “Comparison of model averaging techniques: assessing growth
determinants.” Journal of Applied Econometrics, 27(5), 870-876. doi:10.1002/jae.2288.

Masanjala WH, Papageorgiou C (2008). “Rough and lonely road to prosperity: a reexamination
of the sources of growth in Africa using Bayesian model averaging.” Journal of Applied Economet-
rics, 23(5), 671-682. doi:10.1002/jae.1020.

Sala-I-Martin X (1997). “I Just Ran Two Million Regressions.” The American Economic Review,
87(2), 178–183.

https://journaldata.zbw.eu/dataset/comparison-of-model-averaging-techniques-assessing-growth-determinants
https://doi.org/10.1002/jae.2288
https://doi.org/10.1002/jae.1020

GrowthMPP 23

Examples

Replicate second panel of Table I in Amini & Parmeter (2012)
NOTE: Authors manually scale data, then rescale the resulting coefs and se.
X <- model.matrix(gdpgrowth ~ ., data = GrowthMP)
scaleVector <- apply(X, MARGIN = 2, max)
Xscaled <- apply(X, MARGIN = 2, function(x) x/max(x))
Xscaled <- Xscaled[,-1]
datscaled <- as.data.frame(cbind(gdpgrowth = GrowthMP$gdpgrowth, Xscaled))

fitMP <- wals(gdpgrowth ~ 1 | ., data = datscaled, prescale = FALSE,
prior = laplace(), eigenSVD = FALSE)

tableMP <- cbind("coef" = coef(fitMP)/scaleVector,
"se" = sqrt(diag(vcov(fitMP)))/scaleVector)

printVars <- c("(Intercept)", "lgdp60", "yrsopen", "mining", "primexp70",
"invest")

print(round(tableMP[printVars,], 4))

GrowthMPP Determinants of Economic Growth

Description

Growth regression data used in Magnus et al. (2010).

Usage

GrowthMPP

Format

A data frame with 72 observations on 11 variables:

country factor. Name of the country.

gdpgrowth Average growth rate of GDP per capita from 1960 - 1996 at purchasing power parity.

lgdp60 Logarithm of GDP per capita in 1960.

equipinv Average real equipment investment share of GDP from 1960 - 1985 comprising invest-
ments in electrical and nonelectrical machinery (in relative prices constant across countries).

school60 Enrollment rate for primary education in 1960.

life60 Life expectancy at age 0 in 1960.

popgrowth Average growth rate of population from 1960 - 1996.

law Index for the overall maintenance of the rule of law (’law and order tradition’).

tropics Proportion of country’s land area within geographical tropics.

avelf Average of five different indices of ethnolinguistic fragmentation which is measured as the
probability of two random people in a country not sharing the same language.

confucian Fraction of Confucian population in 1970 and 1980.

24 negativeBinomial

Details

The dataset is used in Magnus et al. (2010) to illustrate the WALS model averaging approach and
combines the data used in Sala-I-Martin et al. (2004) and Sala-I-Martin (1997). See the references
for more detailed descriptions and original sources of the variables.

Source

WALS package for MATLAB (and Stata) provided on Jan Magnus’ personal website. https:
//www.janmagnus.nl/items/WALS.pdf.

References

Magnus JR, Powell O, Prüfer P (2010). “A comparison of two model averaging techniques with
an application to growth empirics.” Journal of Econometrics, 154(2), 139-153. doi:10.1016/
j.jeconom.2009.07.004.

Sala-I-Martin X (1997). “I Just Ran Two Million Regressions.” The American Economic Review,
87(2), 178–183.

Sala-I-Martin X, Doppelhofer G, Miller RI (2004). “Determinants of Long-Term Growth: A
Bayesian Averaging of Classical Estimates (BACE) Approach.” American Economic Review, 94(4),
813-835. doi:10.1257/0002828042002570.

Examples

Replicate Table 2 in Magnus et al. (2010)
NOTE: prescale = FALSE, still used old version of WALS in Magnus et al. (2010).
Not recommended anymore!
fitMPP <- wals(gdpgrowth ~ lgdp60 + equipinv + school60 + life60 + popgrowth |

law + tropics + avelf + confucian, data = GrowthMPP,
prior = laplace(), prescale = FALSE)

tableMPP <- cbind("coef" = coef(fitMPP), "se" = sqrt(diag(vcov(fitMPP))))
print(round(tableMPP, 4))

negativeBinomial Negative binomial family

Description

Reconstruct family object for negative binomial type 2 (NB2) with fixed scale parameter theta.
Analogous to negative.binomial in MASS (Venables and Ripley 2002) but MASS uses non-canonical
link.

Usage

negativeBinomial(theta, link = "log")

https://www.janmagnus.nl/items/WALS.pdf
https://www.janmagnus.nl/items/WALS.pdf
https://doi.org/10.1016/j.jeconom.2009.07.004
https://doi.org/10.1016/j.jeconom.2009.07.004
https://doi.org/10.1257/0002828042002570

predict.wals 25

Arguments

theta dispersion parameter of NB2, always larger than 0.

link specifies link function, currently only "log" and "canonical" are supported.

References

Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Statistics and Computing, 4th
edition. Springer-Verlag, New York. doi:10.1007/9780387217062, https://www.stats.ox.ac.
uk/pub/MASS4/.

See Also

family, familyWALS, negbinWALS, negbinFixedWALS.

predict.wals Methods for wals and walsMatrix Objects

Description

Methods for extracting information from fitted model-averaging objects of classes "wals" and
"walsMatrix". "walsMatrix" objects inherit from "wals", so the methods for "wals" also work
for objects of class "walsMatrix".

Usage

S3 method for class 'wals'
predict(object, newdata, na.action = na.pass, ...)

S3 method for class 'walsMatrix'
predict(object, newX1, newX2, ...)

S3 method for class 'wals'
fitted(object, ...)

S3 method for class 'wals'
residuals(object, ...)

S3 method for class 'wals'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'wals'
summary(object, ...)

S3 method for class 'summary.wals'
print(x, digits = max(3, getOption("digits") - 3), ...)

https://doi.org/10.1007/978-0-387-21706-2
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/

26 predict.wals

S3 method for class 'wals'
coef(object, type = c("all", "focus", "aux"), transformed = FALSE, ...)

S3 method for class 'wals'
vcov(object, type = c("all", "focus", "aux"), transformed = FALSE, ...)

S3 method for class 'wals'
nobs(object, ...)

S3 method for class 'wals'
terms(x, type = c("focus", "aux"), ...)

S3 method for class 'wals'
model.matrix(object, type = c("focus", "aux"), ...)

Arguments

object, x An object of class "wals", "walsMatrix" or "summary.wals".

newdata Optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

na.action Function determining what should be done with missing values in newdata. The
default is to predict NA.

... Further arguments passed to methods.

newX1 Focus regressors matrix to be used for the prediction.

newX2 Auxiliary regressors matrix to be used for the prediction.

digits The number of significant digits to display.

type Character specifying the part of the model that should be returned. For details
see below.

transformed Logical specifying whether the coefficients/covariance matrix of original regres-
sors (FALSE, default) or the transformed regressors (TRUE) should be returned.

Details

A set of standard extractor functions for fitted model objects is available for objects of class "wals"
and "walsMatrix", including methods to the generic functions print and summary which print
the model-averaged estimation of the coefficients along with some further information. As usual,
the summary method returns an object of class "summary.wals" containing the relevant summary
statistics which can then be printed using the associated print method. Inspired by De Luca and
Magnus (2011), the summary statistics also show Kappa which is an indicator for the numeri-
cal stability of the method, i.e. it shows the square root of the condition number of the matrix
Ξ = ∆2X

>
2 M1X2∆2. The summary further provides information on the prior used along with its

parameters. The summary(), print.summary(), print() and logLik() methods are also inspired
by the corresponding methods for objects of class "lm" in stats version 4.3.1 (2023-06-16) (R
Core Team 2023), see e.g. print.summary.lm.

The residuals method computes raw residuals (observed - fitted).

predict.wals 27

For coef and vcov, the type argument, either "all", "focus" or "aux", specifies which part
of the coefficient vector/covariance matrix of the estimates should be returned. Additionally, the
transformed argument specifies whether to return the estimated coefficients/covariance matrix for
the original regressors X or of the transformed regressors Z.

The extractors terms and model.matrix behave similarly to coef, but they only allow type =
"focus" and type = "aux". They extract the corresponding component of the model. This is
similar to the implementation of these extractors in countreg version 0.2-1 (2023-06-13) (Zeileis
and Kleiber 2023; Zeileis et al. 2008), see e.g. terms.hurdle().

Value

predict.wals() and predict.walsMatrix() return a vector containing the predicted means.

fitted.wals() returns a vector containing the fitted means for the data used in fitting.

residuals.wals() returns the raw residuals of the fitted model, i.e. response - fitted mean.

print.wals() invisibly returns its input argument x, i.e. an object of object of class "wals".

summary.wals returns an object of class "summary.wals" which contains the necessary fields for
printing the summary in print.summary.wals().

print.summary.wals() invisibly returns its input argument x, i.e. an object of object of class
"summary.wals".

coef.wals() returns a vector containing the fitted coefficients. If type = "focus", only the coef-
ficients of the focus regressors are returned and if type = "aux", only the coefficients of auxiliary
regressors are returned. Else if type = "all", the coefficients of both focus and auxiliary regressors
are returned. Additionally if transformed = FALSE, coef.wals() returns the estimated coefficients
for the original regressors X (β coefficients) and else if transformed = TRUE the coefficients of the
transformed regressors Z (γ coefficients).

vcov.wals() returns a matrix containing the estimated (co-)variances of the fitted regression co-
efficients. If type = "focus", only the submatrix belonging to the focus regressors is returned and
if type = "aux", only the submatrix corresponding to the auxiliary regressors is returned. Else if
type = "all", the complete covariance matrix is returned. Additionally if transformed = FALSE,
vcov.wals() returns the estimated covariance matrix for the original regressors X (β coefficients)
and else if transformed = TRUE the covariance matrix of the transformed regressors Z (γ coeffi-
cients).

nobs.wals() returns the number of observations used for fitting the model.

terms.wals() returns the terms representation of the fitted model. It is of class c("terms",
"formula"), see terms and terms.object for more details. If type = "focus", then returns the
terms for the focus regressors, else if type = "aux" returns the terms for the auxiliary regressors.

model.matrix.wals() either returns the design matrix of the focus regressors (type = "focus")
or of the auxiliary regressors (type = "aux"). See model.matrix for more details.

References

De Luca G, Magnus JR (2011). “Bayesian model averaging and weighted-average least squares:
Equivariance, stability, and numerical issues.” The Stata Journal, 11(4), 518–544. doi:10.1177/
1536867X1201100402.

https://doi.org/10.1177/1536867X1201100402
https://doi.org/10.1177/1536867X1201100402

28 predict.walsGLM

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Zeileis A, Kleiber C (2023). countreg: Count Data Regression. R package version 0.2-1, https:
//r-forge.r-project.org/projects/countreg/.

Zeileis A, Kleiber C, Jackman S (2008). “Regression Models for Count Data in R.” Journal of
Statistical Software, 27(8), 1–25. doi:10.18637/jss.v027.i08.

See Also

wals

Examples

Example for wals objects
fitGrowth <- wals(gdpgrowth ~ lgdp60 + equipinv + school60 + life60 + popgrowth |

law + tropics + avelf + confucian, data = GrowthMPP,
prior = laplace())

summary(fitGrowth)
fitted(fitGrowth)
vcov(fitGrowth, type = "aux")
familyPrior(fitGrowth)
nobs(fitGrowth)

Example for walsMatrix objects
X1 <- model.matrix(fitGrowth, type = "focus")
X2 <- model.matrix(fitGrowth, type = "aux")
y <- GrowthMPP$gdpgrowth
fitGrowthMatrix <- wals(X1, X2, y, prior = laplace())
coef(fitGrowthMatrix)

predict.walsGLM Methods for walsGLM, walsGLMmatrix, walsNB and walsNBmatrix
Objects

Description

Methods for extracting information from fitted model-averaging objects of classes "walsGLM",
"walsGLMmatrix", "walsNB" and "walsNBmatrix".

Usage

S3 method for class 'walsGLM'
predict(
object,
newdata,
type = c("response", "link", "variance", "prob", "density", "logDens"),

https://www.R-project.org/
https://r-forge.r-project.org/projects/countreg/
https://r-forge.r-project.org/projects/countreg/
https://doi.org/10.18637/jss.v027.i08

predict.walsGLM 29

at = NULL,
na.action = na.pass,
log = FALSE,
...

)

S3 method for class 'walsGLMmatrix'
predict(
object,
newX1,
newX2,
newY = NULL,
type = c("response", "link", "variance", "prob", "density", "logDens"),
at = NULL,
log = FALSE,
...

)

S3 method for class 'walsGLM'
residuals(object, type = c("deviance", "pearson", "response"), ...)

S3 method for class 'walsGLM'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'walsGLM'
summary(object, ...)

S3 method for class 'summary.walsGLM'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'walsGLM'
logLik(object, ...)

S3 method for class 'walsNB'
summary(object, ...)

S3 method for class 'summary.walsNB'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object, x An object of class "walsGLM", "walsGLMmatrix", "walsNB", "walsNBmatrix",
"summary.walsGLM" or "summary.walsNB".

newdata Optionally, a data frame in which to look for variables with which to predict. If
omitted, the original observations are used.

type Character specifying the type of prediction, residual or model part to be returned.
For details see below.

at Optional. Only available if a family of class "familyWALScount" was used for

30 predict.walsGLM

fitting. If type = "prob", a numeric vector at which the probabilities are evalu-
ated. By default 0:max(y) is used where y is the original observed response.

na.action Function determining what should be done with missing values in newdata. The
default is to predict NA.

log Logical. If TRUE, then returns the log-density. If FALSE (default), then returns
density. Only relevant if type = "density".

... Further arguments passed to methods.

newX1 Focus regressors matrix to be used for the prediction.

newX2 Auxiliary regressors matrix to be used for the prediction.

newY Response vector to be used in predictions. Only relevant when type = "prob",
type = "density" or type = "logDens".

digits The number of significant digits to display.

Details

As the "-matrix" classes "walsGLMmatrix" and "walsNBmatrix" inherit from the "non-matrix"
classes, i.e. "walsGLM" and "walsNB", respectively, the following text will treat them as equiva-
lent because they inherit all methods but predict from their "non-matrix" versions. Thus, when
"walsGLM" or "walsNB" are mentioned, we also refer to their "-matrix" versions, except when
explicitly stated. Moreover, note that "walsNB" and "walsNBmatrix" inherit most methods from
"walsGLM" and "walsGLMmatrix".

A set of standard extractor functions for fitted model objects is available for objects of class "walsGLM"
and "walsNB", including methods to the generic functions print and summary which print the
model-averaged estimation of the coefficients along with some further information.

The summary methods returns an object of class "summary.walsGLM" for objects of class "walsGLM"
and an object of class "summary.walsNB" for objects of class "walsNB". They contain the relevant
summary statistics which can then be printed using the associated print() methods. Inspired by
De Luca and Magnus (2011), the summary statistics also show Kappa which is an indicator for the
numerical stability of the method, i.e. it shows the square root of the condition number of the matrix
Ξ̄ = ∆̄2X̄

>
2 M̄1X̄2∆̄2. The summary further shows the deviance and provides information on the

prior and family used.

A logLik method is provided that returns the log-likelihood given the family used and the model-
averaged estimates of the coefficients.

"walsGLM" inherits from "wals", while "walsNB" inherits from both, "walsGLM" and "wals".
Thus, see predict.wals for more methods.

The predict and residuals methods, especially the different types of predictions/residuals con-
trolled by type, are inspired by the corresponding methods in countreg version 0.2-1 (2023-06-13)
(Zeileis and Kleiber 2023; Zeileis et al. 2008), see e.g. predict.hurdle() from countreg, and
stats version 4.3.1 (2023-06-16) (R Core Team 2023), see e.g. residuals.glm. The summary(),
print.summary(), print() and logLik() methods are also inspired by the corresponding meth-
ods for objects of class "glm" in stats, see e.g. print.summary.glm.

coef and vcov are inherited from "wals" (see predict.wals for more), except for objects of
class "walsNB" (see vcov.walsNB). The type argument specifies which part of the coefficient vec-
tor/covariance matrix of the estimates should be returned. For type = "all", they return the com-
plete vector/matrix. For type = "focus" and type = "aux" they return only the part corresponding

predict.walsGLM 31

to the focus and auxiliary regressors, respectively. Additionally, the user can choose whether to
return the estimated coefficients/covariance matrix for the original regressors X (β coefficients) or
of the transformed regressors Z (γ coefficients).

The extractors terms and model.matrix are also inherited from "wals". They only allow type =
"focus" and type = "aux" and extract the corresponding component of the model.

Value

predict.walsGLM() and predict.walsGLMmatrix() return different types of predictions depend-
ing on the argument type:

• type = "response": vector. Predicted mean

• type = "link": vector. Predicted linear link

• type = "variance": vector. Predicted variance

• type = "prob": matrix. Only available if a family of class "familyWALScount" was used for
fitting or for objects of class "walsNB" or "walsNBmatrix". Returns the probability at counts
specified by at.

• type = "density": vector. Predicted density

• type = "logDens": vector. For convenience, returns predicted log-density. Equivalent to
setting type = "density" and log = TRUE.

If type = "prob", type = "density" or type = "logDens", then newdata must contain the re-
sponse or newY must be specified depending on the class of the object.

residuals.walsGLM() returns different types of residuals depending on the argument type:

• type = "deviance": deviance residuals

• type = "pearson": Pearson residuals (raw residuals scaled by square root of variance func-
tion)

• type = "response": raw residuals (observed - fitted)

print.walsGLM() invisibly returns its input argument x, i.e. an object of object of class "walsGLM".

summary.walsGLM() returns an object of class "summary.walsGLM" which contains the necessary
fields for printing the summary in print.summary.walsGLM().

print.summary.walsGLM() invisibly returns its input argument x, i.e. an object of object of class
"summary.walsGLM".

logLik.walsGLM() returns the log-likelihood of the fitted model.

summary.walsNB() returns an object of class "summary.walsNB" which contains the necessary
fields for printing the summary in print.summary.walsNB().

print.summary.walsNB() invisibly returns its input argument x, i.e. an object of object of class
"summary.walsNB".

32 predictCounts

References

De Luca G, Magnus JR (2011). “Bayesian model averaging and weighted-average least squares:
Equivariance, stability, and numerical issues.” The Stata Journal, 11(4), 518–544. doi:10.1177/
1536867X1201100402.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Zeileis A, Kleiber C (2023). countreg: Count Data Regression. R package version 0.2-1, https:
//r-forge.r-project.org/projects/countreg/.

Zeileis A, Kleiber C, Jackman S (2008). “Regression Models for Count Data in R.” Journal of
Statistical Software, 27(8), 1–25. doi:10.18637/jss.v027.i08.

See Also

walsGLM, walsNB, predict.wals.

Examples

Example for walsGLM objects
data("HMDA", package = "AER")
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |

selfemp + afam, family = binomialWALS(), data = HMDA,
prior = weibull())

summary(fitBinomial)
vcov(fitBinomial, type = "focus")
logLik(fitBinomial)
predict(fitBinomial, newdata = HMDA[1:10,], type = "response")
familyWALS(fitBinomial)

Example for walsNB objects
data("NMES1988", package = "AER")

fWals <- (visits ~ chronic + age + I((age^2)/10) + insurance + medicaid |
adl + gender + married + income + school + afam + employed)

fitNB <- walsNB(fWals, data = NMES1988, link = "log", prior = weibull(),
method = "fullSVD")

summary(fitNB)
coef(fitNB, type = "aux")
residuals(fitNB, type = "pearson")
predict(fitNB, newdata = NMES1988[1:10,], type = "prob")
terms(fitNB, type = "aux")

predictCounts Internal methods: Predict probability for counts

https://doi.org/10.1177/1536867X1201100402
https://doi.org/10.1177/1536867X1201100402
https://www.R-project.org/
https://r-forge.r-project.org/projects/countreg/
https://r-forge.r-project.org/projects/countreg/
https://doi.org/10.18637/jss.v027.i08

predictCounts 33

Description

Predicts the probability of counts given a family object of class "familyWALScount". Only works
for count data models.

Usage

predictCounts(x, ...)

S3 method for class 'familyWALScount'
predictCounts(x, yUnique, rowNames, eta, ...)

Arguments

x object of class "familyWALScount".

... Further parameters passed to density() function in family.

yUnique vector. The counts (larger or equal to zero) which to predict probabilities for.

rowNames vector. The names of the observations.

eta vector. The fitted linear link η̂ of the model.

Details

"familyWALScount" objects are used in the fitting methods walsNB, walsNBmatrix, walsGLM or
walsGLMmatrix. For the latter two, only the family poissonWALS is currently supported.

predictCounts() is not available for objects of any class except for "familyWALScount".

The predictCounts.familyWALScount() method is a modified version of the predict.hurdle()
method from the countreg package version 0.2-1 (2023-06-13) (Zeileis and Kleiber 2023; Zeileis
et al. 2008) using the argument type = "prob".

Value

Returns a matrix of dimension length(eta) times length{yUnique} with the predicted probabil-
ities of the counts given in yUnique for every observation in eta.

References

Zeileis A, Kleiber C (2023). countreg: Count Data Regression. R package version 0.2-1, https:
//r-forge.r-project.org/projects/countreg/.

Zeileis A, Kleiber C, Jackman S (2008). “Regression Models for Count Data in R.” Journal of
Statistical Software, 27(8), 1–25. doi:10.18637/jss.v027.i08.

https://r-forge.r-project.org/projects/countreg/
https://r-forge.r-project.org/projects/countreg/
https://doi.org/10.18637/jss.v027.i08

34 semiorthogonalize

semiorthogonalize Internal function: Semiorthogonal-type transformation of X2 to Z2

Description

Uses the matrix Z2s (called Ξ̄ in eq. (9) of De Luca et al. (2018)) to transform X̄2 to Z̄2, i.e. to
perform Z̄2 = X̄2∆̄2Ξ̄−1/2. For WALS in the linear regression model, the variables do not have a
"bar".

Usage

semiorthogonalize(Z2s, X2, Delta2, SVD = TRUE, postmult = FALSE)

Arguments

Z2s Matrix for which we take negative square root in X2 ∗Delta2 ∗ Z2s1/2.

X2 Design matrix of auxiliary regressors to be transformed to Z2

Delta2 Scaling matrix such that diagonal of ∆̄2X̄
>
2 M̄1X̄2∆2 is one (ignored scaling by

n because not needed in code). See De Luca et al. (2018)

SVD If TRUE, uses svd to compute eigendecomposition of Z2s, otherwise uses eigen.

postmult If TRUE, then it uses Z2s−1/2 = TΛ−1/2T>, where T contains the eigenvectors
of Z2s in its columns and Λ the corresponding eigenvalues. If FALSE it uses
Z2s−1/2 = TΛ−1/2.

On the "semiorthogonal-type" transformation

For WALS GLM (and WALS in the linear regression model), the transformation is semiorthogonal
(ignored scaling by n for clarity and because it is not needed in the code) in the sense that M̄1Z̄2 is
semiorthogonal since

Z̄>2 M̄1Z̄2 = (Z̄>2 M̄1)(M̄1Z̄2) = Ik2 ,

where M̄1 is an idempotent matrix.

For WALS in the NB2 regression model, M̄1Z̄2 is not semiorthogonal anymore due to the rank-1
perturbation in M̄1 which causes M̄1 to not be idempotent anymore, see the section "Transformed
model" in Huynh (2023a).

On the use of postmult = TRUE

The transformation of the auxiliary regressors Z2 for linear WALS in eq. (12) of Magnus and De
Luca (2016) differs from the transformation for WALS GLM (and WALS NB) in eq. (9) of De Luca
et al. (2018):

In Magnus and De Luca (2016) the transformed auxiliary regressors are

Z2 = X2∆2TΛ−1/2,

snbinom 35

where T contains the eigenvectors of Ξ = ∆2X
>
2 M1X2∆2 in the columns and Λ the respective

eigenvalues. This definition is used when postmult = FALSE.

In contrast, De Luca et al. (2018) defines

Z2 = X2∆2TΛ−1/2T>,

where we ignored scaling by n and the notation with "bar" for easier comparison. This definition is
used when postmult = TRUE and is strongly preferred for walsGLM and walsNB.

See Huynh (2023b) for more details.

References

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Uni-
versity of Basel. Mimeo.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” Univer-
sity of Basel. Mimeo.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

snbinom Internal function: first derivatives of NB2 PMF

Description

First derivatives of NB2 PMF used in fitNB2. Code is taken from the function snbinom() in the
countreg package version 0.2-1 (2023-06-13) (Zeileis and Kleiber 2023).

Usage

snbinom(x, mu, size, parameter = c("mu", "size"), drop = TRUE)

Arguments

x Vector of quantiles.

mu Vector of means.

size Vector of dispersion parameter. If a scalar is given, the value is recycled.

parameter Specifies which parameter the derivative is taken for. parameter = c("mu",
"size") returns a matrix with derivatives for both parameters.

drop If TRUE, drops empty dimensions of return using drop. If FALSE does not apply
drop.

https://doi.org/10.1016/j.jeconom.2017.12.007
https://doi.org/10.1111/joes.12094

36 svdLSplus

Value

A vector or matrix containing the first derivatives.

References

Zeileis A, Kleiber C (2023). countreg: Count Data Regression. R package version 0.2-1, https:
//r-forge.r-project.org/projects/countreg/.

svdLSplus Internal function: Uses SVD components to compute final estimate via
Sherman-Morrison-Woodbury formula.

Description

Solves the equation system in walsNB via Sherman-Morrison-Woodbury formula for the unre-
stricted estimator γ̂u.

Usage

svdLSplus(U, V, singularVals, y, ell, geB)

Arguments

U Left singular vectors of Z̄ or Z̄1 from svd.

V Right singular vectors of Z̄ or Z̄1 from svd.

singularVals Singular values of Z̄ or Z̄1 from svd.

y "Pseudo"-response, see details.

ell Vector ¯̀from section "Simplification for computing γ̃u" Huynh (2023b)

geB Scalar ḡε̄/(1+B). See section "Simplification for computing γ̃u" Huynh (2023b)
for definition of ḡ, ε̄ and B.

Details

The function can be reused for the computation of the fully restricted estimator γ̃1r and the model
averaged estimator γ̂1.

For γ̃1r and γ̂1 use U, V and singularVals from SVD of Z̄1.

For γ̂u and γ̃1r use same pseudo-response ȳ0 − t̄ε̄Ψ̄−1/2q̄ in argument y.

For γ̂1 use pseudo-response ȳ0 − t̄ε̄Ψ̄−1/2q̄ − (Z̄2 + ḡε̄Ψ̄−1/2q̄q̄>Z2)γ̂2.

See section "Note on function svdLSplus from WALS" in Huynh (2023b).

References

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” University
of Basel. Mimeo.

https://r-forge.r-project.org/projects/countreg/
https://r-forge.r-project.org/projects/countreg/

vcov.walsNB 37

vcov.walsNB Calculate Variance-Covariance Matrix for a "walsNB" object

Description

This method always raises an error because the covariance matrix of the walsNB estimator has not
been derived yet.

Usage

S3 method for class 'walsNB'
vcov(object, ...)

Arguments

object An object of class "walsNB".

... For expansion in the future.

Value

No return value, only raises error because no covariance matrix estimator exists yet.

wals Weighted-Average Least Squares for linear regression models

Description

Performs model averaging for linear regression models using the Weighted-Average Least Squares
method by Magnus et al. (2010). See also De Luca and Magnus (2011), Kumar and Magnus (2013)
and Magnus and De Luca (2016).

Usage

wals(x, ...)

S3 method for class 'formula'
wals(
formula,
data,
subset = NULL,
na.action = NULL,
weights = NULL,
offset = NULL,
prior = weibull(),
model = TRUE,

38 wals

keepY = TRUE,
keepX = FALSE,
sigma = NULL,
...

)

S3 method for class 'matrix'
wals(
x,
x2,
y,
subset = NULL,
na.action = NULL,
weights = NULL,
offset = NULL,
prior = weibull(),
keepY = TRUE,
keepX = FALSE,
sigma = NULL,
...

)

Default S3 method:
wals(x, ...)

Arguments

x Design matrix of focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

... Arguments for workhorse walsFit.

formula an object of class "Formula" (or one that can be coerced to that class, e.g.
"formula"): a symbolic description of the model to be fitted. The details of
model specification are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
which the function is called from.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action not implemented yet.
weights not implemented yet.
offset not implemented yet.
prior Object of class "familyPrior". For example weibull or laplace.

model if TRUE (default), then the model.frame is stored in the return.

keepY if TRUE (default), then the response is stored in the return.

keepX if TRUE, then the model matrices are stored in the return. the return.

wals 39

sigma if NULL (default), then the variance of the error term is estimated. See walsFit
for more details.

x2 Design matrix of auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

y Response as vector.

Details

R port of MATLAB code wals.m (version 2.0, revision 18 December 2013) by J.R. Magnus and
G. De Luca, available from https://www.janmagnus.nl/items/WALS.pdf. Calculates WALS
estimates when focus regressors (X1) are present in all submodels and model averaging takes place
over the auxiliary regressors (X2).

Formulas should always contain two parts, i.e. they should be of the form "y ~ X11 + X12 | X21 +
X22", where the variables before "|" are the focus regressors (includes a constant by default) and
the ones after "|" are the auxiliary regressors.

WARNING: Interactions in formula do not work properly yet. It is recommended to manually
create the interactions beforehand and then to insert them as ’linear terms’ in the formula.

wals.default() raises an error if x is not an object of class "matrix" or a class that extends
"matrix". Otherwise it calls wals.matrix(). It is a modified version of glmboost.default from
the mboost package version 2.9-8 (2023-09-06) (Hofner et al. 2014).

Value

wals.formula() returns an object of class "wals". This is a list that contains all elements returned
from walsFit and additionally

y If keepY = TRUE, contains the response vector.
x list. If keepX = TRUE, then it is a list with elements x1 and x2 containing the

design matrices of the focus and auxiliary regressors, respectively.
weights returns the argument weights.
offset returns the argument offset.
cl Call of the function.
formula formula used.
terms List containing the model terms of the focus and auxiliary regressors separately,

as well as for the full model.
levels List containing the levels of the focus and auxiliary regressors separately, as well

as for the full model.
contrasts List containing the contrasts of the design matrices of focus and auxiliary re-

gressors.
model If model = TRUE, contains the model frame.

See returns of walsFit for more details.

wals.matrix() returns an object of class "walsMatrix", which inherits from "wals". This is a
list that contains all elements returned from walsFit and additionally the response y, the list x with
model matrices x1 and x2, the call cl, offset and weights.

wals.default() raises an error if x is not an object of class "matrix" or a class that extends
"matrix". Otherwise returns an object of class "walsMatrix". See above for more details.

https://www.janmagnus.nl/items/WALS.pdf

40 wals

References

De Luca G, Magnus JR (2011). “Bayesian model averaging and weighted-average least squares:
Equivariance, stability, and numerical issues.” The Stata Journal, 11(4), 518–544. doi:10.1177/
1536867X1201100402.

Hofner B, Mayr A, Robinzonov N, Schmid M (2014). “Model-based Boosting in R: A Hands-
on Tutorial Using the R Package mboost.” Computational Statistics, 29, 3–35.

Kumar K, Magnus JR (2013). “A characterization of Bayesian robustness for a normal location
parameter.” Sankhya B, 75(2), 216–237. doi:10.1007/s1357101300609.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

Magnus JR, Powell O, Prüfer P (2010). “A comparison of two model averaging techniques with
an application to growth empirics.” Journal of Econometrics, 154(2), 139-153. doi:10.1016/
j.jeconom.2009.07.004.

Examples

Replicate table on p. 534 of De Luca & Magnus (2011)
fitDM <- wals(gdpgrowth ~ lgdp60 + equipinv + school60 + life60 + popgrowth |

law + tropics + avelf + confucian, data = GrowthMPP,
prior = laplace())

tableDM <- cbind("coef" = coef(fitDM), "se" = sqrt(diag(vcov(fitDM))))
print(round(tableDM, 7))

Replicate first panel of Table I in Amini & Parmeter (2012)
data("datafls", package = "BMS")

NOTE: Authors manually scale data, then rescale the resulting coefs and se.
X <- model.matrix(y ~ ., data = datafls)
Xscaled <- apply(X, MARGIN = 2, function(x) x/max(x))
Xscaled <- Xscaled[,-1]
scaleVector <- apply(X, MARGIN = 2, function(x) max(x))
flsScaled <- as.data.frame(cbind(y = datafls$y, Xscaled))

NOTE: prescale = FALSE, still used old version of WALS in Magnus et al. (2010).
Not recommended anymore!
fitFLS <- wals(y ~ 1 | ., data = flsScaled, prescale = FALSE, eigenSVD = FALSE,

prior = laplace())
tableFLS <- cbind('coef' = coef(fitFLS)/scaleVector,

'se' = sqrt(diag(vcov(fitFLS)))/scaleVector)
printVars <- c("(Intercept)", "GDP60", "Confucian", "LifeExp", "EquipInv",

"SubSahara", "Muslim", "RuleofLaw")
print(round(tableFLS[printVars,], 4))

Replicate third panel of Table I in Amini & Parmeter (2012)
data("SDM", package = "BayesVarSel")

https://doi.org/10.1177/1536867X1201100402
https://doi.org/10.1177/1536867X1201100402
https://doi.org/10.1007/s13571-013-0060-9
https://doi.org/10.1111/joes.12094
https://doi.org/10.1016/j.jeconom.2009.07.004
https://doi.org/10.1016/j.jeconom.2009.07.004

walsFit 41

rescale response
SDM$y <- SDM$y / 100

NOTE: Authors manually scale data, then rescale the resulting coefs and se.
X <- model.matrix(y ~ ., data = SDM)
Xscaled <- apply(X, MARGIN = 2, function(x) x/max(x))
Xscaled <- Xscaled[,-1]
scaleVector <- apply(X, MARGIN = 2, function(x) max(x))
SDMscaled <- as.data.frame(cbind(y = SDM$y, Xscaled))

NOTE: prescale = FALSE, still used old version of WALS in Magnus et al. (2010).
Not recommended anymore!
fitDW <- wals(y ~ 1 | ., data = SDMscaled, prescale = FALSE, eigenSVD = FALSE,

prior = laplace())
tableDW <- cbind(coef(fitDW)/scaleVector, sqrt(diag(vcov(fitDW)))/scaleVector)
printVars <- c("(Intercept)", "EAST", "P60", "IPRICE1", "GDPCH60L", "TROPICAR")
print(round(tableDW[printVars,], 5))

Example for wals.matrix()
X <- model.matrix(mpg ~ disp + hp + wt + vs + am + carb, data = mtcars)
X1 <- X[,c("(Intercept)", "disp", "hp", "wt")] # focus
X2 <- X[,c("vs", "am", "carb")] # auxiliary
y <- mtcars$mpg

wals(X1, X2, y, prior = weibull())

walsFit Fitter function for Weighted Average Least Squares estimation

Description

Workhorse function behind wals and walsGLM.

Usage

walsFit(
X1,
X2,
y,
sigma = NULL,
prior = weibull(),
method = "original",
svdTol = .Machine$double.eps,
svdRtol = 1e-06,
keepUn = FALSE,
eigenSVD = TRUE,
prescale = TRUE,

42 walsFit

postmult = FALSE,
...

)

Arguments

X1 Design matrix for focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

X2 Design matrix for auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

y Response as vector.
sigma if NULL (default), then the variance of the error term is estimated, see p.136

of Magnus and De Luca (2016). If sigma is specified, then the unrestricted
estimator is divided by sigma before performing the Bayesian posterior mean
estimation.

prior Object of class "familyPrior". For example weibull or laplace.
method Specifies method used. Available methods are "original" (default) or "svd".
svdTol Tolerance for rank of matrix Z̄1 Only used if method = "svd". Checks if small-

est eigenvalue in SVD of Z̄1 and Z̄ is larger than svdTol, otherwise reports a
rank deficiency.

svdRtol Relative tolerance for rank of matrix Z̄1. Only used if method = "svd". Checks
if ratio of largest to smallest eigenvalue in SVD of Z̄1 is larger than svdRtol,
otherwise reports a rank deficiency.

keepUn If TRUE, keeps the estimators of the unrestricted model, i.e. γ̃u.
eigenSVD If TRUE, then semiorthogonalize uses svd to compute the eigendecomposition

of Ξ̄ instead of eigen. In this case, the tolerances of svdTol and svdRtol are
used to determine whether Ξ̄ is of full rank (need it for Ξ̄−1/2).

prescale If TRUE (default), prescales the regressors X1 and X2 with ∆1 and ∆2, respec-
tively, to improve numerical stability and make the coefficients of the auxil-
iary regressors scale equivariant. See De Luca and Magnus (2011) for more
details. WARNING: It is not recommended to set prescale = FALSE. The
option prescale = FALSE only exists for historical reasons.

postmult If TRUE, then it computes

Z2 = X2∆2TΛ−1/2T>,

where T contains the eigenvectors and Λ the eigenvalues from the eigenvalue
decomposition

Ξ = ∆2X
>
2 M1X2∆2 = TΛT>,

instead of
Z2 = X2∆2TΛ−1/2.

See Huynh (2023b) for more details. The latter is used in the original MATLAB
code for WALS in the linear regression model (Magnus et al. 2010; De Luca
and Magnus 2011; Kumar and Magnus 2013; Magnus and De Luca 2016), see
eq. (12) of Magnus and De Luca (2016). The first form is required in eq. (9)
of De Luca et al. (2018). It is not recommended to set postmult = FALSE when
using walsGLM and walsNB.

walsFit 43

... Arguments for internal function computePosterior.

Value

A list containing

coef Model averaged estimates of all coefficients.

beta1 Model averaged estimates of the coefficients of the focus regressors.

beta2 Model averaged estimates of the coefficients of the auxiliary regressors.

gamma1 Model averaged estimates of the coefficients of the transformed focus regressors.

gamma2 Model averaged estimates of the coefficients of the transformed auxiliary regres-
sors.

vcovBeta Estimated covariance matrix of the regression coefficients.

vcovGamma Estimated covariance matrix of the coefficients of the transformed regressors.

sigma Estimated or prespecified standard deviation of the error term.

prior familyPrior. The prior specified in the arguments.

method Stores method used from the arguments.

betaUn1 If keepUn = TRUE, contains the unrestricted estimators of the coefficients of the
focus regressors.

betaUn2 If keepUn = TRUE, contains the unrestricted estimators of the coefficients of the
auxiliary regressors.

gammaUn1 If keepUn = TRUE, contains the unrestricted estimators of the coefficients of the
transformed focus regressors.

gammaUn2 If keepUn = TRUE, contains the unrestricted estimators of the coefficients of the
transformed auxiliary regressors.

fitted.values Estimated conditional means of the data.

residuals Residuals, i.e. response - fitted mean.

X1names Names of the focus regressors.

X2names Names of the auxiliary regressors.

k1 Number of focus regressors.

k2 Number of auxiliary regressors.

n Number of observations.

condition Condition number of the matrix Ξ = ∆2X
>
2 M1X2∆2.

References

De Luca G, Magnus JR (2011). “Bayesian model averaging and weighted-average least squares:
Equivariance, stability, and numerical issues.” The Stata Journal, 11(4), 518–544. doi:10.1177/
1536867X1201100402.

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

https://doi.org/10.1177/1536867X1201100402
https://doi.org/10.1177/1536867X1201100402
https://doi.org/10.1016/j.jeconom.2017.12.007

44 walsGLM

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” Univer-
sity of Basel. Mimeo.

Kumar K, Magnus JR (2013). “A characterization of Bayesian robustness for a normal location
parameter.” Sankhya B, 75(2), 216–237. doi:10.1007/s1357101300609.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

Magnus JR, Powell O, Prüfer P (2010). “A comparison of two model averaging techniques with
an application to growth empirics.” Journal of Econometrics, 154(2), 139-153. doi:10.1016/
j.jeconom.2009.07.004.

See Also

wals, walsGLM.

Examples

X <- model.matrix(gdpgrowth ~ lgdp60 + equipinv + school60 + life60 + popgrowth
+ law + tropics + avelf + confucian, data = GrowthMPP)

X1 <- X[, c("(Intercept)", "lgdp60", "equipinv", "school60", "life60", "popgrowth")]
X2 <- X[, c("law", "tropics", "avelf", "confucian")]
y <- GrowthMPP$gdpgrowth

walsFit(X1, X2, y, prior = weibull(), method = "svd")

walsGLM Weighted Average Least Squares for Generalized Linear Models

Description

Performs model averaging of generalized linear models (GLMs) using the Weighted-Average Least
Squares method described in De Luca et al. (2018).

Usage

walsGLM(x, ...)

S3 method for class 'formula'
walsGLM(
formula,
family,
data,
subset = NULL,
na.action = NULL,
weights = NULL,

https://doi.org/10.1007/s13571-013-0060-9
https://doi.org/10.1111/joes.12094
https://doi.org/10.1016/j.jeconom.2009.07.004
https://doi.org/10.1016/j.jeconom.2009.07.004

walsGLM 45

offset = NULL,
prior = weibull(),
controlInitGLM = controlGLM(),
model = TRUE,
keepY = TRUE,
keepX = FALSE,
iterate = FALSE,
tol = 1e-06,
maxIt = 50,
nIt = NULL,
verbose = FALSE,
...

)

S3 method for class 'matrix'
walsGLM(
x,
x2,
y,
family,
subset = NULL,
na.action = NULL,
weights = NULL,
offset = NULL,
prior = weibull(),
controlInitGLM = controlGLM(),
keepY = TRUE,
keepX = FALSE,
iterate = FALSE,
tol = 1e-06,
maxIt = 50,
nIt = NULL,
verbose = FALSE,
...

)

Default S3 method:
walsGLM(x, ...)

Arguments

x Design matrix of focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

... Arguments for workhorse walsGLMfit.

formula an object of class "Formula" (or one that can be coerced to that class, e.g.
"formula"): a symbolic description of the model to be fitted. The details of
model specification are given under ‘Details’.

family Object of class "familyWALS".

46 walsGLM

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
which the function is called from.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action not implemented yet.
weights not implemented yet.
offset not implemented yet.
prior Object of class "familyPrior". For example weibull or laplace.

controlInitGLM Controls estimation of starting values for one-step ML, see controlGLM.

model if TRUE (default), then the model.frame is stored in the return.

keepY if TRUE (default), then the response is stored in the return.

keepX if TRUE, then the model matrices are stored in the return. the return.

iterate if TRUE then the WALS algorithm is iterated using the previous estimates as
starting values.

tol Only used if iterate = TRUE and nIt = NULL. If the Euclidean distance between
the previous and current coefficient vector divided by the square root of the
length of the vector falls below tol, then the algorithm stops. See walsGLMfitIterate
for more details.

maxIt Only used if iterate = TRUE and nIt = NULL. Aborts iterative fitting when num-
ber of iterations exceed maxIt.

nIt Only used if iterate = TRUE. If this is specified, then tol is ignored and the
algorithm iterates nIt times. This option should not be used unless the user has
a specific reason to run the algorithm nIt times, e.g. for replication purposes.

verbose If verbose = TRUE, then it prints the iteration process (only relevant if iterate
= TRUE).

x2 Design matrix of auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

y Response as vector.

Details

Computes WALS estimates when focus regressors (X1) are present in all submodels and model
averaging takes place over the auxiliary regressors (X2).

Formulas should always contain two parts, i.e. they should be of the form "y ~ X11 + X12 | X21 +
X22", where the variables before "|" are the focus regressors (includes a constant by default) and
the ones after "|" are the auxiliary regressors.

WARNING: Interactions in formula do work work properly yet. It is recommended to manually
create the interactions beforehand and then to insert them as ’linear terms’ in the formula.

walsGLM.default() raises an error if x is not an object of class "matrix" or a class that extends
"matrix". Otherwise it calls walsGLM.matrix(). It is a modified version of glmboost.default
from the mboost package version 2.9-8 (2023-09-06) (Hofner et al. 2014).

walsGLM 47

Value

walsGLM.formula() returns an object of class "walsGLM" which inherits from "wals". This is a
list that contains all elements returned from walsGLMfitIterate and additionally

cl Call of the function.

formula formula used.

terms List containing the model terms of the focus and auxiliary regressors separately,
as well as for the full model.

levels List containing the levels of the focus and auxiliary regressors separately, as well
as for the full model.

contrasts List containing the contrasts of the design matrices of focus and auxiliary re-
gressors.

model If model = TRUE, contains the model frame.

See returns of walsGLMfit and walsGLMfitIterate for more details.

walsGLM.matrix() returns an object of class "walsGLMmatrix", which inherits from "walsGLM",
"walsMatrix" and "wals". This is a list that contains all elements returned from walsGLMfitIterate
and additionally the call in cl.

walsGLM.default() raises an error if x is not an object of class "matrix" or a class that extends
"matrix". Otherwise returns an object of class "walsGLMmatrix". See above for more details.

References

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

Hofner B, Mayr A, Robinzonov N, Schmid M (2014). “Model-based Boosting in R: A Hands-
on Tutorial Using the R Package mboost.” Computational Statistics, 29, 3–35.

Examples

data("HMDA", package = "AER")
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |

selfemp + afam, data = HMDA, family = binomialWALS(),
prior = weibull())

summary(fitBinomial)

data("NMES1988", package = "AER")
fitPoisson <- walsGLM(emergency ~ health + chronic + age + gender |

I((age^2)/10) + married + region, data = NMES1988,
family = poissonWALS(), prior = laplace())

summary(fitPoisson)

Example for walsGLM.matrix()
data("HMDA", package = "AER")
X <- model.matrix(deny ~ pirat + hirat + lvrat + chist + mhist + phist + selfemp + afam,

data = HMDA)
X1 <- X[,c("(Intercept)", "pirat", "hirat", "lvrat", "chist2", "chist3",

https://doi.org/10.1016/j.jeconom.2017.12.007

48 walsGLMfit

"chist4", "chist5", "chist6", "mhist2", "mhist3", "mhist4", "phistyes")]
X2 <- X[,c("selfempyes", "afamyes")]
y <- HMDA$deny
fit <- walsGLM(X1, X2, y, family = binomialWALS(), prior = weibull())
summary(fit)

walsGLMfit Fitter function for Weighted Average Least Squares estimation of
GLMs

Description

Workhorse function behind walsGLM and used internally in walsGLMfitIterate.

Usage

walsGLMfit(
X1,
X2,
y,
betaStart1,
betaStart2,
family,
prior = weibull(),
postmult = TRUE,
...

)

Arguments

X1 Design matrix for focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

X2 Design matrix for auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

y Response as vector.

betaStart1 Starting values for coefficients of focus regressors X1.

betaStart2 Starting values for coefficients of auxiliary regressors X2.

family Object of class "familyWALS".

prior Object of class "familyPrior". For example weibull or laplace.

postmult If TRUE (default), then it computes

Z̄2 = X̄2∆̄2T̄ Λ̄−1/2T̄>,

where T̄ contains the eigenvectors and Λ̄ the eigenvalues from the eigenvalue
decomposition

Ξ̄ = T̄ Λ̄T̄>,

walsGLMfit 49

instead of
Z̄2 = X̄2∆̄2T̄ Λ̄−1/2.

See Huynh (2023b) for more details. The latter is used in the original MATLAB
code for WALS in the linear regression model, see eq. (12) of Magnus and De
Luca (2016). The first form is required in eq. (9) of De Luca et al. (2018).
Thus, it is not recommended to set postmult = FALSE.

... Further arguments passed to walsFit.

Details

Uses walsFit under the hood after transforming the regressors X1 and X2 and the response y. For
more details, see (Huynh 2023b) and De Luca et al. (2018).

Value

A list containing all elements returned by walsFit, except for residuals, and additionally (some
fields are replaced)

condition Condition number of the matrix Ξ̄ = ∆̄2X̄
>
2 M̄1X̄2∆̄2.

family Object of class "familyWALS". The family used.

betaStart Starting values of the regression coefficients for the one-step ML estimators.

fitted.link Linear link fitted to the data.

fitted.values Estimated conditional mean for the data. Lives on the scale of the response.

References

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” Univer-
sity of Basel. Mimeo.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

See Also

walsGLM, walsGLMfitIterate, walsFit.

Examples

data("HMDA", package = "AER")
X <- model.matrix(deny ~ pirat + hirat + lvrat + chist + mhist + phist + selfemp + afam,

data = HMDA)
X1 <- X[,c("(Intercept)", "pirat", "hirat", "lvrat", "chist2", "chist3",

"chist4", "chist5", "chist6", "mhist2", "mhist3", "mhist4", "phistyes")]
X2 <- X[,c("selfempyes", "afamyes")]
y <- HMDA$deny

https://doi.org/10.1016/j.jeconom.2017.12.007
https://doi.org/10.1111/joes.12094

50 walsGLMfitIterate

starting values from glm.fit()
betaStart <- glm.fit(X, y, family = binomialWALS())$coefficients
k1 <- ncol(X1)
k2 <- ncol(X2)

str(walsGLMfit(X1, X2, y,
betaStart1 = betaStart[1:k1],
betaStart2 = betaStart[(k1 + 1):(k1 + k2)],
family = binomialWALS(), prior = weibull()))

walsGLMfitIterate Iteratively fitting walsGLM, internal function for walsGLM.formula
and walsGLM.matrix.

Description

Wrapper around walsGLMfit that allows iteratively (re-)fitting walsGLM models.

Usage

walsGLMfitIterate(
y,
X1,
X2,
family,
na.action = NULL,
weights = NULL,
offset = NULL,
prior = weibull(),
controlInitGLM = controlGLM(),
keepY = TRUE,
keepX = FALSE,
iterate = FALSE,
tol = 1e-06,
maxIt = 50,
nIt = NULL,
verbose = FALSE,
...

)

Arguments

y Response as vector.

X1 Design matrix for focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

walsGLMfitIterate 51

X2 Design matrix for auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

family Object of class "familyWALS".

na.action Not implemented yet.

weights Not implemented yet.

offset Not implemented yet.

prior Object of class "familyPrior". For example weibull or laplace.

controlInitGLM Controls estimation of starting values for one-step ML, see controlGLM.

keepY If TRUE, then output keeps response.

keepX If TRUE, then output keeps the design matrices.

iterate if TRUE then the WALS algorithm is iterated using the previous estimates as
starting values.

tol Only used if iterate = TRUE and nIt = NULL. If the Euclidean distance between
the previous and current coefficient vector divided by the square root of the
length of the vector falls below tol, then the algorithm stops. See below for
more details.

maxIt Only used if iterate = TRUE and nIt = NULL. Aborts iterative fitting when num-
ber of iterations exceed maxIt.

nIt Only used if iterate = TRUE. If this is specified, then tol is ignored and the
algorithm iterates nIt times.

verbose If verbose = TRUE, then it prints the iteration process (only relevant if iterate
= TRUE).

... Arguments to be passed to the workhorse function walsGLMfit.

Details

The parameter tol is used to control the convergence of the iterative fitting algorithm. Let i be the
current iteration step for the coefficient vector βi = (βi,1, . . . , βi,k)′, k > 0. If

||βi − βi−1||2√
k

=

√∑k
j=1(βi,j − βi−1,j)2

k
< tol,

then the fitting process is assumed to have converged and stops.

Value

A list containing all elements returned from walsGLMfit and additionally the following elements:

y If keepY = TRUE, contains the response vector.

x list. If keepX = TRUE, then it is a list with elements x1 and x2 containing the
design matrices of the focus and auxiliary regressors, respectively.

initialFit List containing information (e.g. convergence) on the estimation of the starting
values for walsGLMfit. See glm.fit for more information.

weights returns the argument weights.

52 walsNB

offset returns the argument offset.

converged Logical. Only relevant if iterate = TRUE. Equals TRUE if iterative fitting con-
verged, else FALSE. Is NULL if iterate = FALSE.

it Number of iterations run in the iterative fitting algorithm. NULL if iterate =
FALSE.

deviance Deviance of the fitted regression model.

residuals Raw residuals, i.e. response - fitted mean.

See Also

walsGLM, walsGLMfit.

Examples

data("HMDA", package = "AER")
X <- model.matrix(deny ~ pirat + hirat + lvrat + chist + mhist + phist + selfemp + afam,

data = HMDA)
X1 <- X[,c("(Intercept)", "pirat", "hirat", "lvrat", "chist2", "chist3",

"chist4", "chist5", "chist6", "mhist2", "mhist3", "mhist4", "phistyes")]
X2 <- X[,c("selfempyes", "afamyes")]
y <- HMDA$deny

str(walsGLMfitIterate(y, X1, X2, family = binomialWALS(), prior = weibull(),
iterate = TRUE))

walsNB Weighted-Average Least Squares for Negative Binomial Regression

Description

Performs model averaging for NB2 regression models using the Weighted-Average Least Squares
method of Huynh (2023a).

Usage

walsNB(x, ...)

S3 method for class 'formula'
walsNB(
formula,
data,
subset = NULL,
na.action = NULL,
weights = NULL,
offset = NULL,
link = "log",

walsNB 53

prior = weibull(),
controlInitNB = controlNB(),
model = TRUE,
keepY = TRUE,
keepX = FALSE,
iterate = FALSE,
tol = 1e-06,
maxIt = 50,
nIt = NULL,
verbose = FALSE,
...

)

S3 method for class 'matrix'
walsNB(
x,
x2,
y,
link = "log",
subset = NULL,
na.action = NULL,
weights = NULL,
offset = NULL,
prior = weibull(),
controlInitNB = controlNB(),
model = TRUE,
keepY = TRUE,
keepX = FALSE,
iterate = FALSE,
tol = 1e-06,
maxIt = 50,
nIt = NULL,
verbose = FALSE,
...

)

Default S3 method:
walsNB(x, ...)

Arguments

x Design matrix of focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

... Arguments for workhorse walsNBfit.

formula an object of class "Formula" (or one that can be coerced to that class, e.g.
"formula"): a symbolic description of the model to be fitted. The details of
model specification are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame

54 walsNB

to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
which the function is called from.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action not implemented yet.
weights not implemented yet.
offset not implemented yet.
link specifies the link function, currently only "log" is supported.

prior Object of class "familyPrior". For example weibull or laplace.

controlInitNB Controls estimation of starting values for one-step ML, see controlNB.

model if TRUE (default), then the model.frame is stored in the return.

keepY if TRUE (default), then the response is stored in the return.

keepX if TRUE, then the model matrices are stored in the return. the return.

iterate if TRUE then the WALS algorithm is iterated using the previous estimates as
starting values.

tol Only used if iterate = TRUE and nIt = NULL. If the Euclidean distance between
the previous and current coefficient vector divided by the square root of the
length of the vector falls below tol and the absolute difference between the
previous and current dispersion parameter falls below tol, then the algorithm
stops. See walsNBfitIterate for more details.

maxIt Only used if iterate = TRUE and nIt = NULL. Aborts iterative fitting when num-
ber of iterations exceed maxIt.

nIt Only used if iterate = TRUE. If this is specified, then tol is ignored and the
algorithm iterates nIt times. This option should not be used unless the user has
a specific reason to run the algorithm nIt times, e.g. for replication purposes.

verbose If verbose = TRUE, then it prints the iteration process of internal function walsNBfitIterate
(only relevant if iterate = TRUE).

x2 Design matrix of auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

y Count response as vector.

Details

Computes WALS estimates when focus regressors (X1) are present in all submodels and model
averaging takes place over the auxiliary regressors (X2).

Formulas should always contain two parts, i.e. they should be of the form "y ~ X11 + X12 | X21 +
X22", where the variables before "|" are the focus regressors (includes a constant by default) and
the ones after "|" are the auxiliary regressors.

WARNING: Interactions in formula do not work properly yet. It is recommended to manually
create the interactions beforehand and then to insert them as ’linear terms’ in the formula.

See predict.walsGLM and predict.wals for some class methods that the fitted objects inherit
from "walsGLM" and "wals", respectively.

walsNB 55

walsNB.default() raises an error if x is not an object of class "matrix" or a class that extends
"matrix". Otherwise it calls walsNB.matrix(). It is a modified version of glmboost.default
from the mboost package version 2.9-8 (2023-09-06) (Hofner et al. 2014).

Value

walsNB.formula() returns an object of class "walsNB" which inherits from "walsGLM" and "wals".
This is a list that contains all elements returned from walsNBfitIterate and additionally

cl Call of the function.

formula formula used.

terms List containing the model terms of the focus and auxiliary regressors separately,
as well as for the full model.

levels List containing the levels of the focus and auxiliary regressors separately, as well
as for the full model.

contrasts List containing the contrasts of the design matrices of focus and auxiliary re-
gressors.

model If model = TRUE, contains the model frame.

See returns of walsNBfit and walsNBfitIterate for more details.

walsNB.matrix() returns an object of class "walsNBmatrix", which inherits from "walsNB",
"walsGLMmatrix", "walsGLM" and "wals". This is a list that contains all elements returned from
walsNBfitIterate and additionally the call in cl.

walsNB.default() raises an error if x is not an object of class "matrix" or a class that extends
"matrix". Otherwise returns an object of class "walsNBmatrix". See above for more details.

References

Hofner B, Mayr A, Robinzonov N, Schmid M (2014). “Model-based Boosting in R: A Hands-on
Tutorial Using the R Package mboost.” Computational Statistics, 29, 3–35.

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Uni-
versity of Basel. Mimeo.

Examples

Example for walsNB.formula()
data("NMES1988", package = "AER")

fitWeibull <- walsNB(visits ~ health + chronic + age + gender | I((age^2)/10) +
married + region, data = NMES1988, prior = weibull())

summary(fitWeibull)

fitLaplace <- walsNB(visits ~ health + chronic + age + gender | I((age^2)/10) +
married + region, data = NMES1988, prior = laplace())

summary(fitLaplace)

Example for walsNB.matrix()
data("NMES1988", package = "AER")

56 walsNBfit

X <- model.matrix(visits ~ health + chronic + age + gender + married + region,
data = NMES1988)

X1 <- X[, c("(Intercept)", "healthpoor", "healthexcellent", "chronic",
"age", "gendermale")]

X2 <- X[, c("marriedyes", "regionnortheast", "regionmidwest", "regionwest")]
y <- NMES1988$visits
fit <- walsNB(X1, X2, y, prior = weibull())
summary(fit)

walsNBfit Fitter function for Weighted Average Least Squares estimation of NB2
regression model

Description

Workhorse function behind walsNB and used internally in walsNBfitIterate.

Usage

walsNBfit(
X1,
X2,
y,
betaStart1,
betaStart2,
rhoStart,
family,
prior,
method = c("fullSVD", "original"),
svdTol = .Machine$double.eps,
svdRtol = 1e-06,
keepUn = FALSE,
keepR = FALSE,
eigenSVD = TRUE,
postmult = TRUE,
...

)

Arguments

X1 Design matrix for focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

X2 Design matrix for auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

y Count response as vector.

betaStart1 Starting values for coefficients of focus regressors X1.

walsNBfit 57

betaStart2 Starting values for coefficients of auxiliary regressors X2.

rhoStart Starting value for log-dispersion parameter of NB2

family Object of class "familyNBWALS". Currently only supports negbinWALS.

prior Object of class "familyPrior". For example weibull or laplace.

method Specifies method used. Available methods are "fullSVD" (default) or "original".
See details.

svdTol Tolerance for rank of matrix Z̄1 and Z̄. Only used if method = "fullSVD".
Checks if smallest eigenvalue in SVD of Z̄1 and Z̄ is larger than svdTol, other-
wise reports a rank deficiency.

svdRtol Relative tolerance for rank of matrix Z̄1 and Z̄. Only used if method = "fullSVD".
Checks if ratio of largest to smallest eigenvalue in SVD of Z̄1 and Z̄ is larger
than svdRtol, otherwise reports a rank deficiency.

keepUn If TRUE, keeps the one-step ML estimators of the unrestricted model, i.e. γ̃u and
β̃u.

keepR If TRUE, keeps the one-step ML estimators of the fully restricted model, i.e. γ̃r
and β̃r.

eigenSVD If TRUE, then semiorthogonalize() uses svd() to compute the eigendecom-
position of Ξ̄ instead of eigen(). In this case, the tolerances of svdTol and
svdRtol are used to determine whether Ξ̄ is of full rank (need it for Ξ̄−1/2).

postmult If TRUE (default), then it computes

Z̄2 = X̄2∆̄2T̄ Λ̄−1/2T̄>,

where T̄ contains the eigenvectors and Λ̄ the eigenvalues from the eigenvalue
decomposition

Ξ̄ = T̄ Λ̄T̄>,

instead of
Z̄2 = X̄2∆̄2T̄ Λ̄−1/2.

See Huynh (2023b) for more details. The latter is used in the original MATLAB
code for WALS in the linear regression model, see eq. (12) of Magnus and De
Luca (2016). The first form is required in eq. (9) of De Luca et al. (2018).
Thus, it is not recommended to set postmult = FALSE.

... Arguments for internal function computePosterior.

Details

The method to be specified in method mainly differ in the way they compute the fully restricted and
unrestricted estimators for the transformed regressors Z, i.e. γ̃1r, and γ̃u.

"fullSVD" Recommended approach. First applies an SVD to Z̄1 to compute X̄>2 M̄1X̄2: It is used
for computing the inverse of

X̄>1 X̄1 + ḡε̄X>1 q̄q̄
>X1,

when using the Sherman-Morrison-Woodbury formula. We further leverage the SVD of Z̄1

and additionally Z̄ to compute the unrestricted estimator γ̃u and the fully restricted estimator

58 walsNBfit

γ̃r. For γ̃u, we simply use the SVD of Z̄ to solve the full equation system derived from the
one-step ML problem for more details. The SVD of Z̄1 is further used in computing the model
averaged estimator for the focus regressors γ̂1.
Described in more detail in the appendix of Huynh (2023b).

"original" Computes all inverses directly using solve and does not make use of the Sherman-
Morrison-Woodbury formula for certain inverses. Specifically, it directly inverts the matrix
Z̄>1 Z̄1 using solve in order to compute M̄1. Moreover, it computes the fully unrestricted es-
timators of the focus regressors γ̃1u and of the auxiliary regressors γ̃2u and the fully restricted
estimator γ̃1r by directly implementing the formulas derived in Huynh (2023a). This method
should only be used as reference and for easier debugging.

All variables in the code that contain "start" in their name are computed using the starting values of
the one-step ML estimators. See section "One-step ML estimator" of (Huynh 2023a) for details.

Value

A list containing

coef Model averaged estimates of all coefficients.

beta1 Model averaged estimates of the coefficients of the focus regressors.

beta2 Model averaged estimates of the coefficients of the auxiliary regressors.

rho Model averaged estimate of the log-dispersion parameter of the NB2 distribu-
tion.

gamma1 Model averaged estimates of the coefficients of the transformed focus regressors.

gamma2 Model averaged estimates of the coefficients of the transformed auxiliary regres-
sors.

condition Condition number of the matrix Ξ̄ = ∆̄2X̄
>
2 M̄1X̄2∆̄2.

vcovBeta NULL, not implemented yet, placeholder for estimated covariance matrix of the
regression coefficients.

vcovGamma NULL, not implemented yet, placeholder for estimated covariance matrix of the
coefficients of the transformed regressors.

betaStart Starting values of the regression coefficients for the one-step ML estimators.

rhoStart Starting values of the dispersion parameter for the one-step ML estimators.

method Stores method used from the arguments.

prior familyPrior. The prior specified in the arguments.

betaUn1 If keepUn = TRUE, contains the unrestricted one-step ML estimators of the coef-
ficients of the focus regressors. Else NULL.

betaUn2 If keepUn = TRUE, contains the unrestricted one-step ML estimators of the coef-
ficients of the auxiliary regressors. Else NULL.

gammaUn1 If keepUn = TRUE, contains the unrestricted one-step ML estimators of the coef-
ficients of the transformed focus regressors. Else NULL.

gammaUn2 If keepUn = TRUE, contains the unrestricted one-step ML estimators of the coef-
ficients of the transformed auxiliary regressors. Else NULL.

walsNBfit 59

gamma1r If keepR = TRUE, contains the fully restricted one-step ML estimator for the
transformed regressors (only focus regressors). Else NULL.

k1 Number of focus regressors.

k2 Number of auxiliary regressors.

n Number of observations.

X1names Names of the focus regressors.

X2names Names of the auxiliary regressors.

familyStart The family object of class "familyNBWALS" used for the estimation of the start-
ing values.

family The family object of class "familyNBWALS" used later for predictions.

fitted.link Linear link fitted to the data.

fitted.values Estimated conditional mean for the data. Lives on the scale of the response.

References

De Luca G, Magnus JR, Peracchi F (2018). “Weighted-average least squares estimation of general-
ized linear models.” Journal of Econometrics, 204(1), 1–17. doi:10.1016/j.jeconom.2017.12.007.

Huynh K (2023a). “Weighted-Average Least Squares for Negative Binomial Regression.” Uni-
versity of Basel. Mimeo.

Huynh K (2023b). “WALS: Weighted-Average Least Squares Model Averaging in R.” Univer-
sity of Basel. Mimeo.

Magnus JR, De Luca G (2016). “Weighted-average least squares (WALS): A survey.” Journal
of Economic Surveys, 30(1), 117-148. doi:10.1111/joes.12094.

See Also

walsNB, walsNBfitIterate.

Examples

data("NMES1988", package = "AER")
NMES1988 <- na.omit(NMES1988)
form <- (visits ~ health + chronic + age + insurance + adl + region + gender

+ married + income + school + employed)
X <- model.matrix(form, data = NMES1988)
focus <- c("(Intercept)", "healthpoor", "healthexcellent", "chronic", "age",

"insuranceyes")
aux <- c("adllimited", "regionnortheast", "regionmidwest", "regionwest",

"gendermale", "marriedyes", "income", "school", "employedyes")
X1 <- X[, focus]
X2 <- X[, aux]
y <- NMES1988$visits

starting values from glm.nb() from MASS
startFit <- MASS::glm.nb(y ~ X[,-1])

https://doi.org/10.1016/j.jeconom.2017.12.007
https://doi.org/10.1111/joes.12094

60 walsNBfitIterate

betaStart <- coef(startFit)
rhoStart <- startFit$theta
k1 <- ncol(X1)
k2 <- ncol(X2)

str(walsNBfit(X1, X2, y, rhoStart, family = negbinWALS(scale = rhoStart, link = "log"),
betaStart1 = betaStart[1:k1],
betaStart2 = betaStart[(k1 + 1):(k1 + k2)],
prior = weibull(), method = "fullSVD"))

walsNBfitIterate Iteratively fitting walsNB, internal function for walsNB.formula and
walsNB.matrix.

Description

Wrapper around walsNBfit that allows iteratively (re-)fitting walsNB models.

Usage

walsNBfitIterate(
y,
X1,
X2,
link = "log",
na.action = NULL,
weights = NULL,
offset = NULL,
prior = weibull(),
controlInitNB = controlNB(),
keepY = TRUE,
keepX = FALSE,
iterate = FALSE,
tol = 1e-06,
maxIt = 50,
nIt = NULL,
verbose = FALSE,
...

)

Arguments

y Count response as vector.

X1 Design matrix for focus regressors. Usually includes a constant (column full of
1s) and can be generated using model.matrix.

X2 Design matrix for auxiliary regressors. Usually does not include a constant col-
umn and can also be generated using model.matrix.

walsNBfitIterate 61

link specifies the link function, currently only "log" is supported.

na.action Not implemented yet.

weights Not implemented yet.

offset Not implemented yet.

prior Object of class "familyPrior". For example weibull or laplace.

controlInitNB Controls estimation of starting values for one-step ML, see controlNB.

keepY If TRUE, then output keeps response.

keepX If TRUE, then output keeps the design matrices.

iterate if TRUE then the WALS algorithm is iterated using the previous estimates as
starting values.

tol Only used if iterate = TRUE and nIt = NULL. If the Euclidean distance between
the previous and current coefficient vector divided by the square root of the
length of the vector falls below tol and the absolute difference between the
previous and current dispersion parameter falls below tol, then the algorithm
stops. See below for more details.

maxIt Only used if iterate = TRUE and nIt = NULL. Aborts iterative fitting when num-
ber of iterations exceed maxIt.

nIt Only used if iterate = TRUE. If this is specified, then tol is ignored and the
algorithm iterates nIt times.

verbose If verbose = TRUE, then it prints the iteration process (only relevant if iterate
= TRUE).

... Arguments to be passed to the workhorse function walsNBfit.

Details

The parameter tol is used to control the convergence of the iterative fitting algorithm. Let i be
the current iteration step for the coefficient vector βi = (βi,1, . . . , βi,k)′, k > 0, and dispersion
parameter ρi. If

||βi − βi−1||2√
k

=

√∑k
j=1(βi,j − βi−1,j)2

k
< tol,

and
|ρi − ρi−1| < tol,

then the fitting process is assumed to have converged and stops.

Value

A list containing all elements returned from walsNBfit and additionally the following elements:

y If keepY = TRUE, contains the response vector.

x list. If keepX = TRUE, then it is a list with elements x1 and x2 containing the
design matrices of the focus and auxiliary regressors, respectively.

initialFit List containing information (e.g. convergence) on the estimation of the starting
values for walsNBfit. See return of fitNB2 for more information.

62 walsNBfitIterate

weights returns the argument weights.

offset returns the argument offset.

converged Logical. Only relevant if iterate = TRUE. Equals TRUE if iterative fitting con-
verged, else FALSE. Is NULL if iterate = FALSE.

it Number of iterations run in the iterative fitting algorithm. NULL if iterate =
FALSE.

deviance Deviance of the fitted (conditional) NB2 regression model.

residuals Raw residuals, i.e. response - fitted mean.

See Also

walsNB, walsNBfit.

Examples

data("NMES1988", package = "AER")
NMES1988 <- na.omit(NMES1988)
form <- (visits ~ health + chronic + age + insurance + adl + region + gender

+ married + income + school + employed)
X <- model.matrix(form, data = NMES1988)
focus <- c("(Intercept)", "healthpoor", "healthexcellent", "chronic", "age",

"insuranceyes")
aux <- c("adllimited", "regionnortheast", "regionmidwest", "regionwest",

"gendermale", "marriedyes", "income", "school", "employedyes")
X1 <- X[, focus]
X2 <- X[, aux]
y <- NMES1988$visits

str(walsNBfitIterate(y, X1, X2, prior = weibull(), link = "log",
method = "fullSVD", iterate = TRUE))

Index

∗ datasets
GrowthMP, 21
GrowthMPP, 23

as.data.frame, 38, 46, 53

binomialWALS (familyWALS), 16

checkSingularitySVD, 2
coef, 27, 30
coef.wals (predict.wals), 25
computeGamma1, 3
computeGamma1r, 4
computeGammaUnSVD, 6
computePosterior, 3, 7, 15, 20, 43, 57
computeX2M1X2, 8
controlGLM, 9, 46, 51
controlNB, 10, 19, 54, 61

ddweibull, 11, 15
dlaplace, 12, 15
drop, 35
dsubbotin, 12, 13, 13, 15
dweibull, 11, 12

eigen, 34, 42

family, 16–18, 25
familyNBWALS, 19, 57, 59
familyNBWALS (familyWALS), 16
familyPrior, 7, 14, 38, 42, 46, 48, 51, 54, 57,

61
familyPrior_laplace, 8
familyPrior_laplace (familyPrior), 14
familyWALS, 16, 25, 45, 48, 49, 51
familyWALScount, 29, 31, 33
familyWALScount (familyWALS), 16
fitNB2, 11, 18, 35, 61
fitted.wals (predict.wals), 25
Formula, 38, 45, 53
formula, 38, 45, 53

gammaToBeta, 20
glm.control, 10
glm.fit, 10, 51
glm.nb, 11, 19
GrowthMP, 21
GrowthMPP, 23

integrate, 7

laplace, 7, 13, 38, 42, 46, 48, 51, 54, 57, 61
laplace (familyPrior), 14
lm.fit, 20
logLik, 30
logLik.walsGLM (predict.walsGLM), 28

make.link, 16
model.matrix, 27, 31, 38, 39, 42, 45, 46, 48,

50, 51, 53, 54, 56, 60
model.matrix.wals (predict.wals), 25

negative.binomial, 24
negativeBinomial, 17, 24
negbinFixedWALS, 25
negbinFixedWALS (familyWALS), 16
negbinWALS, 19, 25, 57
negbinWALS (familyWALS), 16
nobs.wals (predict.wals), 25

optim, 11, 19

poissonWALS, 33
poissonWALS (familyWALS), 16
predict, 30
predict.wals, 25, 30, 32, 54
predict.walsGLM, 28, 54
predict.walsGLMmatrix

(predict.walsGLM), 28
predict.walsMatrix (predict.wals), 25
predictCounts, 32
print, 26, 30
print.familyPrior (familyPrior), 14

63

64 INDEX

print.summary.glm, 30
print.summary.lm, 26
print.summary.wals (predict.wals), 25
print.summary.walsGLM

(predict.walsGLM), 28
print.summary.walsNB (predict.walsGLM),

28
print.wals (predict.wals), 25
print.walsGLM (predict.walsGLM), 28

residuals, 26, 30
residuals.glm, 30
residuals.wals (predict.wals), 25
residuals.walsGLM (predict.walsGLM), 28

semiorthogonalize, 20, 34, 42
snbinom, 35
solve, 58
stats, 26, 30
subbotin, 7, 14
subbotin (familyPrior), 14
summary, 26, 30
summary.wals (predict.wals), 25
summary.walsGLM (predict.walsGLM), 28
summary.walsNB (predict.walsGLM), 28
svd, 3, 5, 6, 20, 34, 36, 42
svdLSplus, 4, 5, 7, 36

terms, 27, 31
terms.object, 27
terms.wals (predict.wals), 25
theta.ml, 11

vcov, 27, 30
vcov.wals (predict.wals), 25
vcov.walsNB, 30, 37

wals, 14, 15, 28, 37, 41, 44, 47, 54
walsFit, 38, 39, 41, 49
walsGLM, 9, 10, 14–18, 32, 33, 35, 41, 42, 44,

44, 48–50, 52, 54
walsGLMfit, 45, 47, 48, 50–52
walsGLMfitIterate, 10, 46–49, 50
walsGLMmatrix, 33
walsGLMmatrix (walsGLM), 44
walsNB, 10, 11, 14–18, 32, 33, 35, 42, 52, 56,

59, 60, 62
walsNBfit, 17, 53, 55, 56, 60–62
walsNBfitIterate, 11, 54–56, 59, 60

walsNBmatrix, 33
walsNBmatrix (walsNB), 52
weibull, 7, 12, 38, 42, 46, 48, 51, 54, 57, 61
weibull (familyPrior), 14

	checkSingularitySVD
	computeGamma1
	computeGamma1r
	computeGammaUnSVD
	computePosterior
	computeX2M1X2
	controlGLM
	controlNB
	ddweibull
	dlaplace
	dsubbotin
	familyPrior
	familyWALS
	fitNB2
	gammaToBeta
	GrowthMP
	GrowthMPP
	negativeBinomial
	predict.wals
	predict.walsGLM
	predictCounts
	semiorthogonalize
	snbinom
	svdLSplus
	vcov.walsNB
	wals
	walsFit
	walsGLM
	walsGLMfit
	walsGLMfitIterate
	walsNB
	walsNBfit
	walsNBfitIterate
	Index

