Response-adaptive randomization (RAR) can be a powerful strategy in Phase II dose-finding trials. It allows sponsors to dynamically update the randomization scheme at one or more interim analyses based on accumulating data. By shifting allocation toward more promising treatment arms, RAR can enhance the ethical and statistical efficiency of the trial.
This vignette demonstrates how to simulate a trial with
response-adaptive design using the TrialSimulator
package.
For further background, refer to this
document from the MedianaDesigner
package. Dr. Alex
Dmitrienko also provides a series of excellent online lectures on this
topic:
However, the original MedianaDesigner::ADRand()
function
is no longer functional, even for examples provided on this page.
Therefore, this vignette focuses on implementing a similar
response-adaptive design using TrialSimulator
. The core
algorithm for updating the randomization ratio is re-implemented based
on the logic of the DoseFinding
package and may differ
slightly from that used in Dr. Dmitrienko’s materials.
We assume an Emax
model for the endpoint
fev1
(forced expiratory volume in 1 second) measured after
4 months of treatment. The maximum effect (0.1) is achieved at dose
100.
The trial includes one placebo arm and five active arms with doses: 20, 25, 30, and 35.
A total of 200 patients are recruited over 36 months, with 50% of enrollment expected by 24 months.
Two interim analyses are planned after 50 and 120 patients have
non-missing fev1
readouts, i.e. pipeline patients are
excluded.
The final analysis is performed when data from all 200 patients are available.
At each interim:
Candidate dose-response models Emax
,
sigEmax
, and quadratic
are fitted.
Bootstrap estimates from DoseFinding::maFitMod()
are
used to calculate, for each dose \(d \in \{20,
25, 30, 35\}\), the probability \(p_d\) that the estimated treatment effect
exceeds 0.08.
The randomization ratio for each active dose is set proportional to \(p_d\)
The placebo ratio remains fixed at 20%.
At the final analysis, a multiple contrast test is conducted using data from all 200 patients.
fev1
The following function generates fev1
outcomes using the
assumed Emax
model. It is later assigned as the generator
function when defining endpoints.
fev1
Endpoints for Each ArmEach treatment arm is associated with an endpoint definition, specifying the dose and data generator.
fev1 <- endpoint(name = 'fev1', type = 'non-tte', readout = c(fev1 = 4),
generator = rng, dose = 0)
pbo <- arm(name = '0.0')
pbo$add_endpoints(fev1)
fev1 <- endpoint(name = 'fev1', type = 'non-tte', readout = c(fev1 = 4),
generator = rng, dose = 20.0)
dose1 <- arm(name = '20.0')
dose1$add_endpoints(fev1)
fev1 <- endpoint(name = 'fev1', type = 'non-tte', readout = c(fev1 = 4),
generator = rng, dose = 25.0)
dose2 <- arm(name = '25.0')
dose2$add_endpoints(fev1)
fev1 <- endpoint(name = 'fev1', type = 'non-tte', readout = c(fev1 = 4),
generator = rng, dose = 30.0)
dose3 <- arm(name = '30.0')
dose3$add_endpoints(fev1)
fev1 <- endpoint(name = 'fev1', type = 'non-tte', readout = c(fev1 = 4),
generator = rng, dose = 35.0)
dose4 <- arm(name = '35.0')
dose4$add_endpoints(fev1)
Here we define the trial object with 200 patients and an accrual period of 36 months. The total trial duration is extended to 40 months to account for a 4-month follow-up after last enrollment.
accrual_rate <- data.frame(end_time = c(24, Inf),
piecewise_rate = c(100/24, 100/12))
trial <- trial(
name = 'Trial-3415', n_patients = 200,
seed = 1727811904, duration = 40,
enroller = StaggeredRecruiter, accrual_rate = accrual_rate
)
trial$add_arms(sample_ratio = rep(1, 5), pbo, dose1, dose2, dose3, dose4)
#> Arm(s) <0.0, 20.0, 25.0, 30.0, 35.0> are added to the trial.
#> Randomization is done for 200 potential patients.
#> Data of 200 potential patients are generated for the trial with 5 arm(s) <0.0, 20.0, 25.0, 30.0, 35.0>.
trial
#> ⚕⚕ Trial Name: Trial-3415
#> ⚕⚕ Description: Trial-3415
#> ⚕⚕ # of Arms: 5
#> ⚕⚕ Registered Arms: 0.0, 20.0, 25.0, 30.0, 35.0
#> ⚕⚕ Sample Ratio: 1, 1, 1, 1, 1
#> ⚕⚕ # of Patients: 200
#> ⚕⚕ Planned Duration: 40
#> ⚕⚕ Random Seed: 1727811904
Three milestones are defined: two interim analyses and one final analysis. The same action is used for both interims, while a separate one is used for the final.
stage1 <- milestone(name = 'stage 1',
when = eventNumber('fev1', n = 50),
action = stage_action)
stage2 <- milestone(name = 'stage 2',
when = eventNumber('fev1', n = 120),
action = stage_action)
final <- milestone(name = 'final',
when = eventNumber('fev1', n = 200),
action = final_action)
The stage_action()
function is called at each interim
milestone to lock current data and update sample ratios based on
model-based probabilities. It utilities a helper function
compute_sample_ratio()
which can be found in the Appendix
below.
stage_action <- function(trial, milestone_name){
locked_data <- trial$get_locked_data(milestone_name)
new_sample_ratio <- compute_sample_ratio(locked_data)
trial$update_sample_ratio(arm_names = c('0.0', '20.0', '25.0', '30.0', '35.0'),
sample_ratios = new_sample_ratio)
message(milestone_name, ': ')
data.frame(table(locked_data$arm), new_sample_ratio) %>%
setNames(c('dose', 'total_n', 'new_ratio')) %>% print()
invisible(NULL)
}
At the final milestone, the function final_action()
performs the multiple contrast test and stores the result. It calls a
helper function multiple_contrast_test()
, which can be
found in the Appendix below.
After registering all milestones with a listener object, we simulate
the trial using controller$run()
.
listener <- listener()
listener$add_milestones(stage1, stage2, final)
#> A milestone <stage 1> is registered.
#> A milestone <stage 2> is registered.
#> A milestone <final> is registered.
controller <- controller(trial, listener)
controller$run(n = 1, plot_event = TRUE, silent = TRUE)
#> stage 1:
#> dose total_n new_ratio
#> 1 0.0 13 0.2000000
#> 2 20.0 13 0.1056760
#> 3 25.0 13 0.1469556
#> 4 30.0 14 0.2253870
#> 5 35.0 13 0.3219814
#> stage 2:
#> dose total_n new_ratio
#> 1 0.0 31 0.20000000
#> 2 20.0 25 0.03908046
#> 3 25.0 26 0.10344828
#> 4 30.0 28 0.21839080
#> 5 35.0 43 0.43908046
#> final:
#> dose total_n
#> 1 0.0 40
#> 2 20.0 26
#> 3 25.0 32
#> 4 30.0 39
#> 5 35.0 63
output <- controller$get_output()
output %>%
kable(escape = FALSE) %>%
kable_styling(bootstrap_options = "striped",
full_width = FALSE,
position = "left") %>%
scroll_box(width = "100%")
trial | seed | milestone_time_<stage 1> | n_events_<stage 1>_<patient_id> | n_events_<stage 1>_<fev1> | n_events_<stage 1>_<arms> | milestone_time_<stage 2> | n_events_<stage 2>_<patient_id> | n_events_<stage 2>_<fev1> | n_events_<stage 2>_<arms> | milestone_time_<final> | n_events_<final>_<patient_id> | n_events_<final>_<fev1> | n_events_<final>_<arms> | MC_test | error_message |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trial-3415 | 1727811904 | 15.76 | 66 | 50 | c(13, 10…. | 30.28 | 153 | 120 | c(31, 24…. | 39.88 | 200 | 200 | c(40, 40…. | TRUE |
In the output, the columns
n_event_<milestone>_<arms>
contain detailed
information on observed events or sample sizes per arm at each
milestone. It is evident that we have pipeline patients at both
interims.
output[, 'n_events_<stage 1>_<arms>']
#> [[1]]
#> X0.0 X20.0 X25.0 X30.0 X35.0 endpoint
#> 1 13 13 13 14 13 patient_id
#> 2 10 10 10 10 10 fev1
output[, 'n_events_<stage 2>_<arms>']
#> [[1]]
#> X0.0 X20.0 X25.0 X30.0 X35.0 endpoint
#> 1 31 25 26 28 43 patient_id
#> 2 24 20 23 23 30 fev1
output[, 'n_events_<final>_<arms>']
#> [[1]]
#> X0.0 X20.0 X25.0 X30.0 X35.0 endpoint
#> 1 40 26 32 39 63 patient_id
#> 2 40 26 32 39 63 fev1
For completeness, the full code of the helper functions
compute_sample_ratio()
and
multiple_contrast_test()
is included below, which determine
the new sample ratio and performs the multiple contrast test.
compute_sample_ratio <- function(data){
data$dose <- as.numeric(data$arm)
fit <- lm(fev1 ~ factor(dose) - 1, data = data)
dose <- unique(sort(data$dose))
mu_hat <- coef(fit)
S_hat <- vcov(fit)
suppressMessages(
ma_fit <- DoseFinding::maFitMod(dose, mu_hat, S = S_hat,
models = c("emax", "sigEmax", "quadratic"))
)
pred <- predict(ma_fit, doseSeq = c(0, 20, 25, 30, 35), summaryFct = NULL)
prob <- apply(pred[, -1] - pred[, 1], 2, function(x){mean(x > .08)})
sample_ratio <- c(.2, (1 - .2) * prob / sum(prob)) %>% unname()
sample_ratio
}
multiple_contrast_test <- function(data){
candidate_models <- DoseFinding::Mods(
emax = c(2.6, 12.5), sigEmax = c(30.5, 3.5), quadratic = -0.00776,
placEff = 1.25, maxEff = 0.15, doses = c(0, 20, 25, 30, 35))
data$dose <- as.numeric(data$arm)
test <- DoseFinding::MCTtest(dose = dose, resp = fev1,
models = candidate_models, data = data)
## at least one dose shows significant non-flatten pattern
any(attr(test$tStat, 'pVal') < .05)
}