Package ‘TrialSimulator’

September 3, 2025
Type Package

Title Clinical Trial Simulator
Version 1.0.0

Description Simulate phase II and/or phase III clinical trials. It supports various types of end-
points and adaptive strategies. Tools for carrying out graphical testing procedure and combina-
tion test under group sequential design are also provided.

License MIT + file LICENSE
Encoding UTF-8

Imports base6b4enc, dplyr, emmeans, ggplot2, gMCPLite, htmltools,
mvtnorm, R6, rlang, rpact, rstudioapi, survival, utils

RoxygenNote 7.3.2

Suggests DoseFinding, graphicalMCP, kableExtra, knitr, rmarkdown,
simdata, survminer, testthat (>= 3.0.0)

VignetteBuilder knitr
URL https://zhangh12.github.io/TrialSimulator/

BugReports https://github.com/zhangh12/TrialSimulator/issues
Depends R (>=4.1.0)

Config/testthat/edition 3

NeedsCompilation no

Author Han Zhang [cre, aut]

Maintainer Han Zhang <zhangh.ustc@gmail.com>

Repository CRAN

Date/Publication 2025-09-03 20:50:13 UTC

Contents

ATINS . . . e e e

https://zhangh12.github.io/TrialSimulator/
https://github.com/zhangh12/TrialSimulator/issues

2 arm
controller 6
Controllers e e e e e 7
CorrelatedPfsAndOs3 9
CorrelatedPfsAndOs4 e e 9
default_action 11
doNothing e 11
DynamicRNGFunction 12
endpoint oL L. e e e e 13
Endpoints e 15
enrollment e 17
eventNumber e e e e e e 18
fitCoxph e 19
fitFarringtonManning Lo 20
fithinear e e e e e e e e e e 21
fitlogistic e 22
fitlogrank 23
getAdaptiveDesignOutput 24
getFixedDesignOutput L 24
GraphicalTesting e 24
GroupSequentialTest L 32
LStener. e e e e e e e e e e e e e e e e 37
Listeners o 38
milestone L e e e e e e e e e e e 39
Milestones e e 40
PiecewiseConstantExponentialRNG L. 42
plot.milestone_time_summary e e e e e e 43
plot.three_state_model 43
TCOMSE + v v v v i e e e e e e e e e e e e e e e e e e 44
solveMixtureExponentialDistribution Lo, 44
solveThreeStateModel 46
StaggeredRecruiter 47
summarizeDataFrame e 48
summarizeMilestoneTime 49
trial .. e e e 50
Trials . . . o o e 52
weibullDropout L 68

Index 69

arm Define an Arm

Description

Define an arm in a trial. This is a user-friendly wrapper for the class constructor Arm$new. Users
who are not familiar with the concept of classes may consider using this wrapper directly.

Arms 3

Usage
arm(name, ...)
Arguments
name name of arm, which is the arm’s label in generated data
subset condition that is compatible with dplyr::filter. This can be used to
specify inclusion criteria of an arm. By default it is not specified, i.e. all data
generated by the generator specified in
Examples

risk <- data.frame(

end_time = c(1, 10, 26.0, 52.0),

piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-3.01)
)

pfs <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = risk, endpoint_name = 'pfs')

orr <- endpoint(
name = 'orr', type = 'non-tte',
readout = c(orr = 2), generator = rbinom,
size = 1, prob = .4)

placebo <- arm(name = 'pbo')

placebo$add_endpoints(pfs, orr)

placebo

head(placebo$get_endpoints()[[1]]1$get_generator()(n = 1e3))
placebo$get_endpoints()[[2]]$get_name()

print summary reports for endpoint objects in console
placebo

Arms Class of Arm

Description

Create a class of arm.

Methods
Public methods:

* Arms$new()

Arms

¢ Arms$add_endpoints()

* Arms$get_name()

e Arms$get_number_endpoints()
e Arms$has_endpoint()

* Arms$get_endpoints()

* Arms$get_endpoints_name()

* Arms$generate_data()

* Arms$print()

e Arms$clone()

Method new(): initialize an arm
Usage:
Arms$new(name, ...)
Arguments:

name name of arm, which is the arm’s label in generated data

. subset condition that is compatible with dplyr::filter. This can be used to specify
inclusion criteria of an arm. By default it is not specified, i.e. all data generated by the
generator specified in

Method add_endpoints(): add a list of endpoints to the arm
Usage:
Arms$add_endpoints(...)
Arguments:

. one or more objects of class Endpoint

Method get_name(): return name of arm
Usage:
Arms$get_name()

Method get_number_endpoints(): return number of endpoints in the arm
Usage:
Arms$get_number_endpoints()

Method has_endpoint(): check if the arm has any endpoint. Return TRUE or FALSE.
Usage:
Arms$has_endpoint ()

Method get_endpoints(): return a list of endpoints in the arm
Usage:
Arms$get_endpoints()

Method get_endpoints_name(): return name of endpoints registered to the arm

Usage:
Arms$get_endpoints_name()

calendarTime

Method generate_data(): generate arm data

Usage:
Arms$generate_data(n_patients_in_arm)

Arguments:
n_patients_in_arm integer. Number of patients randomized to the arm

Method print(): print an arm

Usage:

Arms$print(categorical_vars = NULL)

Arguments:
categorical_vars categorical_vars character. Vector of categorical variables. This can be

used to specify variables with limited distinct values as categorical variables in summary.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Arms$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples
Instead of using Arm$new, please use arm(), a user-friendly

wrapper. See examples in ?arm

calendarTime Triggering condition by calendar time

Description
Define a condition to trigger trial milestone by calendar time. The milestone will be trigger when a

trial has been running for at least the specified duration. It can be used combined with conditions

specified by enrollment and eventNumber.

Usage
calendarTime(time)
Arguments
time numeric. Calendar time to trigger a milestone of a trial.
Value

an object of class ‘Condition*

6 controller

controller Define a Controller

Description
Define a controller of a trial. This is a user-friendly wrapper for the class constructor Controller$new.
Users who are not familiar with the concept of classes may consider using this wrapper directly.
Usage

controller(trial, listener)

Arguments
trial a Trial object.
listener a Listener object.
Examples

a minimum, meaningful, and executable example,
where a randomized trial with two arms is simulated and analyzed.

control <- arm(name = 'control arm')
active <- arm(name = 'active arm')

pfs_in_control <- endpoint(name = 'PFS', type = 'tte', generator = rexp, rate = log(2) / 5)
control$add_endpoints(pfs_in_control)

pfs_in_active <- endpoint(name = 'PFS', type = 'tte', generator = rexp, rate = log(2) / 6)
active$add_endpoints(pfs_in_active)

accrual_rate <- data.frame(end_time = c(10, Inf), piecewise_rate = c(30, 50))
trial <- trial(name = 'trial',

n_patients = 1000,

duration = 40,

enroller = StaggeredRecruiter,

accrual_rate = accrual_rate,

dropout = rweibull, shape = 2, scale = 38)

trial$add_arms(sample_ratio = c(1, 1), control, active)

action_at_final <- function(trial, milestone_name){
locked_data <- trial$get_locked_data(milestone_name)
fitLogrank(Surv(PFS, PFS_event) ~ arm, placebo = 'control arm',
data = locked_data, alternative = 'less')
invisible(NULL)
}

final <- milestone(name = 'final analysis',

Controllers

action = action_at_final,
when = calendarTime(time = 40))

listener <- listener()
listener$add_milestones(final)

controller <- controller(trial, listener)
controller$run(n = 1)

Controllers Class of Controller

Description

Create a class of controller to run a trial.

Methods

Public methods:
e Controllers$new()
e Controllers$get_listener()
* Controllers$get_trial()
* Controllers$mute()
e Controllers$reset()
e Controllers$get_output()
e Controllers$run()
* Controllers$clone()

Method new(): initialize a controller of the trial
Usage:
Controllers$new(trial, listener)

Arguments:
trial aTrials object.
listener alisteners object.

Method get_listener(): return listener
Usage:
Controllers$get_listener()
Method get_trial(): return trial
Usage:
Controllers$get_trial()

Method mute(): mute all messages (not including warnings)

8 Controllers

Usage:
Controllers$mute()
Arguments:

silent logical.

Method reset(): reset the trial and listener registered to the controller before running additional
replicate of simulation.

Usage:

Controllers$reset()

Method get_output(): return a data frame of all current outputs saved by calling save.

Usage:
Controllers$get_output(cols = NULL, simplify = TRUE)

Arguments:

cols columns to be returned from Controller$output. If NULL, all columns are returned.

simplify logical. Return value rather than a data frame of one column when length(col) ==
1 and simplify == TRUE.

Method run(): run a trial

Usage:
Controllers$run(n = 1, plot_event = TRUE, silent = FALSE, dry_run = FALSE)

Arguments:

n number of replicates of simulation. n =1 by default. Simulation results can be accessed by
Controller$get_output().

plot_event create event plot

silent logical. TRUE if muting all messages during a trial. Note that warning messages are still
displayed.

dry_run TRUE if action function provided by users is ignored and a built-in default action
default_action is called instead. This default function only locks data when the mile-
stone is triggered. Milestone time and number of endpoints’ events or sample sizes are
saved. It is suggested to set dry_run = TRUE to estimate distributions of triggering time
and number of events before formally using custom action functions if a fixed design is in
use. This helps determining planned maximum information for group sequential design and
reasonable time of milestone of interest when planning a trial. Set it to FALSE for formal
simulations. However, for an adaptive design where arm(s) could possibly be added or re-
moved, setting dry_run to TRUE is usually not helpful because adaption should be actually
applied to estimate milestone time.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Controllers$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

#i#

CorrelatedPfsAndOs3 9

CorrelatedPfsAndOs3 Generate PFS and OS using the three-states model

Description

Generate PFS and OS using the three-states model

Usage

CorrelatedPfsAndOs3(n, h@1, h@2, h12, pfs_name = "pfs"”, os_name = "os")

Arguments
n integer. Number of observations.
ho1 constant transition hazard from state "stable" to state "progression".
ho2 constant transition hazard from state "stable" to state "death".
h12 constant transition hazard from state "progression" to state "death".
pfs_name column name of PFS in returned data frame. It must be consistent with ‘name*
in the function ‘endpoint()‘.
os_name column name of OS in returned data frame. It must be consistent with ‘name*
in the function ‘endpoint()‘.
Value

A data frame of four columns, including PFS, OS and their event indicators. The event indicators
are all 1s.

Examples

pfs_and_os_trt <- CorrelatedPfsAndOs3(1e4, 0.06, 0.30, .30, 'PFS', '0S')
pfs_and_os_pbo <- CorrelatedPfsAndOs3(1e4, 0.10, 0.40, 0.30, 'PFS', '0S')

CorrelatedPfsAndOs4 Generate PFS, OS and objective response using the four-states model

Description

Generate PFS, OS and objective response using the four-states model

10 CorrelatedPfsAndOs4

Usage
CorrelatedPfsAnd0s4(
n,
transition_probability,
duration,
death_name = "death”,
progression_name = "progression”,
response_name = "response”
)
Arguments
n integer. Number of observations.

transition_probability

a 4x4 matrix defining transition probabilities between stable (initial state, 1),
response (2), progression (3) and death (absorbing, 4).

duration integer. Duration of trial. Set it to a sufficient large integer in practice to cover
the duration of the trial (potentially be extended).

death_name column name of OS in returned data frame. It must be consistent with ‘name*
in the function ‘endpoint()‘.

progression_name

column name of PFS in returned data frame. It must be consistent with ‘name*
in the function ‘endpoint()‘.

response_name column name of objective response in returned data frame. It must be consistent
with ‘name° in the function ‘endpoint()°.

Value

A data frame of n rows and 6 columns (response, progression, death, and their event indicators
response_event, progression_event, death_event with 1 means event and 0 means censored at dura-
tion).

Examples

m <- matrix(c(0.99, 0.0035, 0.0055, ©.0010,
0, 0.9900, 0.0052, 0.0048,
0, 0, 0.9960, 0.0040,
9, 0, 0, 1),
nrow = 4, byrow = TRUE)

pfs_and_os <- CorrelatedPfsAndOs4(1e4, m, 365 * 3)

default_action 11

default_action default action function for dry run of a trial

Description

default action function for dry run of a trial

Usage

default_action()

doNothing An action function that does nothing

Description

This is an action function that does nothing when the corresponding milestone is triggered. When
the listener is monitoring a trial and determining the time to trigger a milestone, data is automatically
locked with other necessary data manipulation being executed. If the users have no intent to mod-
ify the trial adaptively at the milestone, e.g., adding (add_arms()) or removing (remove_arms())
arm(s), changing sampling ratio(s) (update_sample_ratio()), modifying trial duration, carrying
out statistical testing, or saving intermediate results (save()), then this function can be used to set
the argument action when creating a new milestone. Note that the triggering time of a milestone
with action = doNothing is still recorded in output automatically.

Usage

doNothing(trial, milestone_name)

Arguments

trial aTrial object.

milestone_name character. Name of milestone being triggered.

Value

This function returns NULL. Actually, nothing is done in this function.

12

DynamicRNGFunction

DynamicRNGFunction A wrapper of random number generator.

Description

A wrapper of random number generator.

Usage
DynamicRNGFunction(fn, ...)
Arguments
fn random number generator, e.g., rnorm, rchisq, etc. It can be user-defined random
number generator as well, e.g., PiecewiseConstantExponentialRNG
arguments for fn. Specifying invalid arguments can trigger error and be stopped.
There are three exceptions. (1) rng can be passed through ‘...° to give true
name of fn. This could be necessary as it may be hard to parse it accurately
in DynamicRNGFunction, or simply for a more informative purpose in some
scenarios. (2) var_name can be passed through °...° to specify the name of gen-
erated variable. (3) simplify can be set to FALSE to convert a vector into a
one-column data frame in returned object. This happens for built-in random
number generators, e.g., rnorm, rbinom, etc. These three arguments will not be
passed into fn.
Value
a function to generate random number based on ‘fn‘ and arguments in ‘...°. Specified arguments will

be fixed and cannot be changed when invoking ‘DynamicRNGFunction(fn, ...)()‘. For example, if
‘foo <- DynamicRNGFunction(rnorm, sd = 2)*, then ‘foo(n = 100)‘ will always generate data from
normal distribution of variance 4. ‘foo(n = 100, sd = 1)° will trigger an error. However, if an
argument is not specified in ‘DynamicRNGFunction‘, then it can be specified later. For example,
‘foo(n = 100, mean = -1)° will generate data from N(-1, 4).

Examples

example code

dfunc <- DynamicRNGFunction(rnorm, sd = 3.2)

x <- dfunc(1e3)
hist(x)

endpoint 13

endpoint Define endpoints

Description

Define one or multiple endpoints. This is a user-friendly wrapper for the class constructor Endpoint$new.
Users who are not familiar with the concept of classes may consider using this wrapper directly.
wrapper if

Usage

endpoint(name, type = c("tte”, "non-tte"), readout = NULL, generator, ...)

Arguments

name character vector. Name(s) of endpoint(s)

type character vector. Type(s) of endpoint(s). It supports "tte"” for time-to-event
endpoints, and "non-tte"” for all other types of endpoints (e.g., continous, bi-
nary, categorical, or repeated measurement. TrialSimulator will do some ver-
ification if an endpoint is of type "tte”. However, no special manipulation is
done for non-tte endpoints.

readout numeric vector with name to be the non-tte endpoint(s). readout should be
specified for every non-tte endpoint. For example, c(endpoint1 =6, endpoint2
= 3). If all endpoints are tte, readout can be NULL.

generator a RNG function. Its first argument must be ‘n‘, number of patients. It must
return a data frame of ‘n‘ rows. It support all built-in random number generators
in stats, e.g., stats: :rnorm, stats: :rexp, etc. that with n as the argument
for number of observations. generator could be any custom functions as long
as (1) its first argument is n; and (2) it returns a vector of length n or a data
frame of n rows. Custom random number generator can return data of more than
one endpoint. This is useful when users need to simulate correlated endpoints.
The column names of returned data frame should match to name exactly. If an
endpoint is of type "tte”, the custom generator should also return a column as
event indicator. For example, if "pfs” is "tte", then custom generator should
return at least two columns "pfs” and "pfs_event”. Usually pfs_event can
be all Is if no censoring. Censoring can be specified later when defining the
Trial through argument dropout. See ?Trial. Note that if covariates, e.g.,
biomarker, subgroup, are needed in generating and analyzing trial data, they can
be defined as Endpoint as well.

optional arguments for generator.

Examples

set.seed(12345)
Example 1. Generate a time-to-event endpoint.
Two columns are returned, one for time, one for event (1/0, @ for

14

endpoint

A built-in RNG function is used to handle piecewise constant exponential
distribution
risk <- data.frame(
end_time = c(1, 10, 26.0, 52.0),
piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-3.01)
)

pfs <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = risk, endpoint_name = 'pfs')
pfs$get_generator()

Example 2. Generate continuous and binary endpoints using R's built-in
RNG functions, e.g. rnorm, rexp, rbinom, etc.
epl <- endpoint(
name = 'cd4', type = 'non-tte', generator = rnorm, readout = c(cd4=1),
mean = 1.2)
ep2 <- endpoint(
name = 'resp_time', type = 'non-tte', generator = rexp, readout = c(resp_time=0),

rate = 4.5)
ep3 <- endpoint(
name = 'orr', type = 'non-tte', readout = c(orr=3), generator = rbinom,

size = 1, prob = .4)

mean(epl1$get_generator()(1e4)[, 1]) # compared to 1.2
sd(epl$get_generator()(1e4)[, 1]1) # compared to 1.0

log(2) / median(ep2$get_generator()(1e4)[, 1]) # compared to 4.5
mean(ep3$get_generator()(1e4)[, 1]1) # compared to 0.4

print summary reports for endpoint objects in console

epl

ep2

ep3

An example of piecewise constant exponential random number generator
Baseline hazards are piecewise constant

Hazard ratios are piecewise constant, resulting a delayed effect.

run <- TRUE

if (!requireNamespace("”survminer”, quietly = TRUE)) {

run <- FALSE

message("Please install 'survminer' to run this example."”)
3
if (!requireNamespace("”survival”, quietly = TRUE)) {

run <- FALSE

message("Please install 'survival' to run this example.")

3

if(run){

Endpoints 15

riskl <- risk

epl <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk1, endpoint_name = 'pfs')

risk2 <- riskl

risk2$hazard_ratio <- c(1, 1, .6, .4)

ep2 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk2, endpoint_name = 'pfs')

n <- 1000
tte <- rbind(epl$get_generator()(n), ep2%$get_generator()(n))
arm <- rep(0:1, each =n)
dat <- data.frame(tte, arm)
sfit <- survival::survfit(
survival::Surv(time = pfs, event = pfs_event) ~ arm, dat)

survminer: :ggsurvplot(sfit,
data = dat,
pval = TRUE, # Show p-value
conf.int = TRUE, # Show confidence intervals
risk.table = TRUE, # Add risk table
palette = c("blue”, "red"))

print summary reports for endpoint objects in console
epl
ep2

Endpoints Class of Endpoint

Description

Create a class of endpoint to specify its name, type and assign a random number generator.

Methods

Public methods:
e Endpoints$new()
* Endpoints$test_generator()
e Endpoints$get_generator()
e Endpoints$get_readout()
* Endpoints$get_uid()

16

Endpoints

* Endpoints$get_name()
* Endpoints$get_type()
* Endpoints$print()
¢ Endpoints$clone()

Method new(): initialize an endpoint

Usage:
Endpoints$new(name, type = c("tte”, "non-tte"), readout = NULL, generator, ...)

Arguments:

name character vector. Name(s) of endpoint(s)

type character vector. Type(s) of endpoint(s). It supports "tte"” for time-to-event endpoints,
and "non-tte"” for all other types of endpoints (e.g., continous, binary, categorical, or re-
peated measurement. TrialSimulator will do some verification if an endpoint is of type
"tte". However, no special manipulation is done for non-tte endpoints.

readout numeric vector with name to be the non-tte endpoint(s). readout should be spec-
ified for every non-tte endpoint. For example, c(endpoint1 =6, endpoint2 =3). If all
endpoints are tte, readout can be NULL.

generator a RNG function. Its first argument must be ‘n‘, number of patients. It must return
a data frame of ‘n‘ rows. It support all built-in random number generators in stats, e.g.,
stats::rnorm, stats: :rexp, etc. that with n as the argument for number of observations.
generator could be any custom functions as long as (1) its first argument is n; and (2) it
returns a vector of length n or a data frame of n rows. Custom random number generator can
return data of more than one endpoint. This is useful when users need to simulate correlated
endpoints. The column names of returned data frame should match to name exactly. If an
endpoint is of type "tte”, the custom generator should also return a column as event
indicator. For example, if "pfs” is "tte", then custom generator should return at least
two columns "pfs” and "pfs_event”. Usually pfs_event can be all 1s if no censoring.
Censoring can be specified later when defining the Trial through argument dropout. See
?Trial. Note that if covariates, e.g., biomarker, subgroup, are needed in generating and
analyzing trial data, they can be defined as Endpoint as well.

. optional arguments for generator.
Method test_generator(): test random number generator of the endpoints. It returns an
example dataset.

Usage:
Endpoints$test_generator(n = 1000)

Arguments:

n integer. Number of random numbers generated from the generator.

Method get_generator(): return random number generator of an endpoint

Usage:
Endpoints$get_generator()

Method get_readout(): return readout function

Usage:

enrollment 17

Endpoints$get_readout()

Method get_uid(): return uid
Usage:
Endpoints$get_uid()

Method get_name(): return endpoints’ name
Usage:
Endpoints$get_name()

Method get_type(): return endpoints’ type
Usage:
Endpoints$get_type()

Method print(): print an endpoint object

Usage:
Endpoints$print(categorical_vars = NULL)

Arguments:
categorical_vars categorical_vars character. Vector of categorical variables. This can be

used to specify variables with limited distinct values as categorical variables in summary.
Method clone(): The objects of this class are cloneable with this method.

Usage:
Endpoints$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Instead of using Endpoint$new, please use endpoint(), a user-friendly
wrapper. See examples in ?endpoint.

enrollment Triggering condition by number of randomized patients

Description

Define a condition to trigger trial milestone by the number of randomized patients. The milestone
will be trigger when a trial has enrolled at least the specified number of patients. It can be used
combined with conditions specified by calendarTime and eventNumber.

Usage

enrollment(n, ..., arms = NULL)

18 eventNumber

Arguments
n integer. Number of randomized patients.
subset conditions compatible with dplyr: :filter. Number of randomized pa-
tients will be counted on subset of trial data only.
arms vector of character. Name of arms on which the number of patients is counted.
If NULL, use all arms that are not yet removed from the trial by the time of
calculation.
Value

an object of class ‘Condition*

eventNumber Triggering condition by number of events or observations of an end-
point

Description

Define a condition to trigger trial milestone by the number of events of a time-to-event endpoint
or the number of non-missing observations of a non-time-to-event endpoint. The milestone will be
triggered when a trial has observed at least the specified number of endpoint events (or non-missing
observations). It can be used combined with conditions specified by calendarTime and enrollment.

Number of events for a time-to-event endpoint can vary at different milestones as more patients are
randomized into a trial, or more events onset over time.

Number of non-missing observations for a non-time-to-event endpoint can vary at different mile-
stones as more patients are randomized into a trial, or more patients have been treated until their
readout time (thus, NA turns to a value).

Usage
eventNumber(endpoint, n, ..., arms = NULL)
Arguments
endpoint character. Name of an endpoint.
n integer. Targeted number of events.
subset conditions compatible with dplyr::filter. Number of events will be
counted on subset of trial data only.
arms vector of character. Name of arms on which the number of events is counted.
If NULL, use all arms that are not yet removed from the trial by the time of
calculation.
Value

an object of class ‘Condition*

fitCoxph 19

fitCoxph Fit Cox proportional hazard ratio model

Description

Fit Cox proportional hazards model on an time-to-event endpoint.

Usage
fitCoxph(formula, placebo, data, alternative, scale, ..., tidy = TRUE)
Arguments
formula An object of class formula that can be used with survival::coxph. Must
consist arm and endpoint in data. Covariates can be adjusted. Interactions
between arm and covariates are allowed in formula, but arm must has a term of
main effect, and only estimate of that main effect is tested.
placebo Character. String indicating the placebo in data$arm.
data Data frame. Usually it is a locked data set.
alternative a character string specifying the alternative hypothesis, must be one of "greater”
or "less”. No default value. "greater” means superiority of treatment over
placebo is established by an hazard ratio greater than 1.
scale character. The type of estimate in the output. Must be one of "log hazard
ratio” or "hazard ratio”. No default value.
Subset conditions compatible with dplyr: :filter. coxph will be fitted on this
subset only. This argument can be useful to create a subset of data for analysis
when a trial consists of more than two arms. By default, it is not specified, all
data will be used to fit the model. More than one condition can be specified in
.., e.g., fitCoxph(formula, 'pbo', data, 'less', 'loghazard ratio’,
arm %in% c('pbo', 'low dose'), pfs > @.5), whichis equivalent to: fitCoxph(formula,
'pbo’', data, 'less', 'log hazard ratio', arm%in% c('pbo', 'low dose')
& pfs>0.5).
tidy logical. FALSE if more information are returned. Default TRUE.
Value

a data frame with three columns:

arm name of the treatment arm.

placebo name of the placebo arm.

estimate estimate of main effect of arm, depending on scale.
p one-sided p-value for log hazard ratio (treated vs placebo).
info the number of events of the endpoint in the subset.

z the z statistics of log hazard ratios.

20 fitFarringtonManning

fitFarringtonManning Farrington-Manning test for rate difference

Description

Test rate difference by comparing it to a pre-specified value using the Farrington-Manning test

Usage
fitFarringtonManning(endpoint, placebo, data, alternative, ..., delta = 0)
Arguments
endpoint Character. Name of the endpoint in data.
placebo Character. String indicating the placebo in data$arm.
data Data frame. Usually it is a locked data set.
alternative a character string specifying the alternative hypothesis, must be one of "greater”
or "less”. No default value. "greater” means superiority of treatment over
placebo is established by rate difference greater than ‘delta“.
Subset conditions compatible with dplyr::filter. glm will be fitted on this
subset only. This argument can be useful to create a subset of data for anal-
ysis when a trial consists of more than two arms. By default, it is not spec-
ified, all data will be used to fit the model. More than one condition can be
specified in ..., e.g., fitFarringtonManning('remission', 'pbo', data,
delta, arm %in% c('pbo', 'low dose'), cfb > @.5), which is equivalent to:
fitFarringtonManning('remission', 'pbo', data, delta, arm%in% c('pbo’,
'low dose') & cfb > @.5). Note that if more than one treatment arm are present
in the data after applying filter in . . ., models are fitted for placebo verse each
of the treatment arms.
delta the rate difference between a treatment arm and placebo under the null. O by
default.
Value

a data frame with three columns:

arm name of the treatment arm.

placebo name of the placebo arm.

estimate estimate of rate difference.

p one-sided p-value for log odds ratio (treated vs placebo).
info sample size in the subset with NA being removed.

z the z statistics of log odds ratio (treated vs placebo).

fitLinear

References

21

Farrington, Conor P., and Godfrey Manning. "Test statistics and sample size formulae for com-
parative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk."
Statistics in medicine 9.12 (1990): 1447-1454.

fitLinear

Fit linear regression model

Description

Fit linear regression model on a continuous endpoint.

Usage
fitLinear(formula, placebo, data, alternative, ...)
Arguments
formula an object of class formula. Must include arm and endpoint in data. Covariates
can be adjusted.
placebo Character. String indicating the placebo arm in data$arm.
data Data frame. Usually it is a locked data set.
alternative a character string specifying the alternative hypothesis, must be one of "greater”
or "less”. No default value. "greater” means superiority of treatment over
placebo is established by a greater mean in treated arm.
Subset conditions compatible with dplyr::filter. glm will be fitted on this
subset only. This argument can be useful to create a subset of data for analy-
sis when a trial consists of more than two arms. By default, it is not specified,
all data will be used to fit the model. More than one condition can be speci-
fiedin ..., e.g., fitLinear(cfb ~arm, 'pbo', data, 'greater', arm%in%
c('pbo', 'lowdose'), cfb>0.5), which is equivalent to: fitLinear(cfb ~
arm, 'pbo', data, 'greater', arm%in% c('pbo', 'lowdose') & cfb>0.5).
Note that if more than one treatment arm are present in the data after applying
filter in . . ., models are fitted for placebo verse each of the treatment arms.
Value

a data frame with columns:

arm name of the treatment arm.

placebo name of the placebo arm.

estimate estimate of average treatment effect of arm.

p one-sided p-value for between-arm difference (treated vs placebo).

info sample size used in model with NA being removed.

z z statistics of between-arm difference (treated vs placebo).

22 fitLogistic

fitLogistic Fit logistic regression model

Description

Fit logistic regression model on an binary endpoint.

Usage
fitLogistic(formula, placebo, data, alternative, scale, ...)
Arguments
formula An object of class formula. Must include arm and endpoint in data. Covariates
can be adjusted.
placebo Character. String indicating the placebo in data$arm.
data Data frame. Usually it is a locked data set.
alternative a character string specifying the alternative hypothesis, must be one of "greater”
or "less”. No default value. "greater” means superiority of treatment over
placebo is established by an odds ratio greater than 1.
scale character. The type of estimate in the output. Must be one of "coefficient”,
"log odds ratio”, "odds ratio”, "risk ratio”, or "risk difference"”. No
default value.
Subset conditions compatible with dplyr::filter. glm will be fitted on this
subset only. This argument can be useful to create a subset of data for analy-
sis when a trial consists of more than two arms. By default, it is not specified,
all data will be used to fit the model. More than one condition can be speci-
fiedin ..., e.g., fitLogistic(remission ~arm, 'pbo', data, 'greater’,
'odds ratio', arm%in% c('pbo', 'low dose'), cfb > @.5), which is equiv-
alentto: fitLogistic(remission ~arm, 'pbo', data, 'greater', 'odds ratio',
arm%in% c('pbo', 'lowdose') & cfb > @.5). Note that if more than one treat-
ment arm are present in the data after applying filter in . . ., models are fitted for
placebo verse each of the treatment arms.
Value

a data frame with columns:

arm name of the treatment arm.

placebo name of the placebo arm.

estimate estimate depending on scale.

p one-sided p-value for log odds ratio (treated vs placebo).
info sample size used in model with NA being removed.

z z statistics of log odds ratio (treated vs placebo).

fitLogrank 23

fitLogrank Carry out log rank test

Description

Compute log rank test statistic on an endpoint.

Usage
fitLogrank(formula, placebo, data, alternative, ..., tidy = TRUE)
Arguments
formula An object of class formula that can be used with survival: : coxph. Must con-
sist arm and endpoint in data. No covariate is allowed. Stratification variables
are supported and can be added using strata(...).
placebo character. String of placebo in data$arm.
data data frame. Usually it is a locked data.
alternative a character string specifying the alternative hypothesis, must be one of "greater”
or "less”. No default value. "greater” means superiority of treatment over
placebo is established by an hazard ratio greater than 1.
subset condition that is compatible with dplyr::filter. survival::coxph
with ties = "exact"” will be fitted on this subset only. This argument could be
useful to create a subset of data for analysis when a trial consists of more than
two arms. By default it is not specified, all data will be used to fit the model.
More than one conditions can be specified in ..., e.g., fitLogrank(formula,
data, arm%in% c('pbo', 'lowdose'), pfs >0.5), whichis equivalent to fitLogrank(formula,
data, arm%in% c('pbo', 'lowdose') & pfs >0.5).
tidy logical. FALSE if more information are returned. Default TRUE.
Value

a data frame with three columns:

arm name of the treatment arm.

placebo name of the placebo arm.

p one-sided p-value for log-rank test (treated vs placebo).
info the number of events of the endpoint in the subset.

z the z statistics of log hazard ratios.

24 GraphicalTesting

getAdaptiveDesignOutput
Get simulation output in the vignette adaptiveDesign.Rmd

Description

Internal function that retrieves precomputed simulation results. Not meant for use by package users.

Usage

getAdaptiveDesignOutput ()

Value

A data frame containing simulation results of 1000 replicates.

getFixedDesignOutput Get simulation output in the vignette fixedDesign.Rmd

Description

Internal function that retrieves precomputed simulation results. Not meant for use by package users.

Usage

getFixedDesignOutput()

Value

A data frame containing simulation results of 1000 replicates.

GraphicalTesting Class of GraphicalTesting

Description

Perform graphical testing under group sequential design for one or multiple endpoints. See Maurer
& Bretz (2013).

GraphicalTesting 25

Methods

Public methods:

e GraphicalTesting$new()

e GraphicalTesting$reset()

* GraphicalTesting$is_valid_hid()

* GraphicalTesting$get_hypothesis_name()

* GraphicalTesting$get_weight()

* GraphicalTesting$set_weight()

e GraphicalTesting$get_alpha()

* GraphicalTesting$set_alpha()

* GraphicalTesting$get_hypotheses_ids()

* GraphicalTesting$get_number_hypotheses()

* GraphicalTesting$get_hids_not_in_graph()

* GraphicalTesting$get_testable_hypotheses()
e GraphicalTesting$has_testable_hypotheses()
* GraphicalTesting$is_in_graph()

* GraphicalTesting$is_testable()

e GraphicalTesting$get_hid()

* GraphicalTesting$reject_a_hypothesis()

e GraphicalTesting$set_trajectory()

e GraphicalTesting$get_trajectory()

* GraphicalTesting$test_hypotheses()

* GraphicalTesting$test()

* GraphicalTesting$get_current_testing_results()
* GraphicalTesting$get_current_decision()

e GraphicalTesting$print()

e GraphicalTesting$clone()

Method new(): Initialize an object for graphical testing procedure. Group sequential design is
also supported.

Usage:

GraphicalTesting$new(
alpha,
transition,
alpha_spending,
planned_max_info,
hypotheses = NULL,
silent = FALSE

)
Arguments:
alpha initial alpha allocated to each of the hypotheses.

transition matrix of transition weights. Its diagonals should be all Os. The row sums should
be 1s (for better power) or Os (if no outbound edge from a node).

26

GraphicalTesting

alpha_spending character vector of same length of alpha. Currently it supports 'asP', 'asOF ',
and 'asUser'.

planned_max_info vector of integers. Maximum numbers of events (tte endpoints) or patients
(non-tte endpoints) at the final analysis of each hypothesis when planning a trial. The actual
numbers could be different, which can be specified elsewhere.

hypotheses vector of characters. Names of hypotheses.
silent TRUE if muting all messages and not generating plots.

Method reset(): reset an object of class GraphicalTesting to original status so that it can be
reused.

Usage:
GraphicalTesting$reset()
Method is_valid_hid(): determine if index of a hypothesis is valid
Usage:
GraphicalTesting$is_valid_hid(hid)

Arguments:

hid an integer

Method get_hypothesis_name(): get name of a hypothesis given its index.
Usage:
GraphicalTesting$get_hypothesis_name(hid)
Arguments:

hid an integer

Method get_weight(): return weight between two nodes
Usage:
GraphicalTesting$get_weight(hid1l, hid2)
Arguments:
hid1 an integer
hid2 an integer

Method set_weight(): update weight between two nodes
Usage:
GraphicalTesting$set_weight(hid1l, hid2, value)
Arguments:
hid1 an integer
hid2 an integer
value numeric value to be set as a weight two nodes

Method get_alpha(): return alpha allocated to a hypothesis when calling this function. Note
that a function can be called several time with the graph is updated dynamically. Thus, returned
alpha can be different even for the same hid.

Usage:

GraphicalTesting 27

GraphicalTesting$get_alpha(hid)
Arguments:

hid an integer

Method set_alpha(): update alpha of a hypothesis
Usage:
GraphicalTesting$set_alpha(hid, value)

Arguments:
hid integer. Index of a hypothesis
value numeric value to be allocated

Method get_hypotheses_ids(): return all valid hid

Usage:
GraphicalTesting$get_hypotheses_ids()

Method get_number_hypotheses(): return number of hypotheses, including those been re-
jected.

Usage:
GraphicalTesting$get_number_hypotheses()

Method get_hids_not_in_graph(): return index of hypotheses that are rejected.

Usage:
GraphicalTesting$get_hids_not_in_graph()

Method get_testable_hypotheses(): return index of hypotheses with non-zero alphas, thus
can be tested at the current stage.

Usage:
GraphicalTesting$get_testable_hypotheses()

Method has_testable_hypotheses(): determine whether at least one hypothesis is testable.
If return FALSE, the testing procedure is completed.

Usage:
GraphicalTesting$has_testable_hypotheses()

Method is_in_graph(): determine whether a hypothesis is not yet rejected (in graph).
Usage:
GraphicalTesting$is_in_graph(hid)
Arguments:

hid integer. Index of a hypothesis

Method is_testable(): determine whether a hypothesis has a non-zero alpha allocated.

Usage:
GraphicalTesting$is_testable(hid)

Arguments:

28

GraphicalTesting

hid integer. Index of a hypothesis

Method get_hid(): convert hypothesis’s name into (unique) index.

Usage:
GraphicalTesting$get_hid(hypothesis)

Arguments:
hypothesis character. Name of a hypothesis. It is different from hid, which is an index.

Method reject_a_hypothesis(): remove a node from graph when a hypothesis is rejected

Usage:
GraphicalTesting$reject_a_hypothesis(hypothesis)

Arguments:
hypothesis name of a hypothesis. It is different from hid, which is an index.

Method set_trajectory(): save new testing results at current stage

Usage:
GraphicalTesting$set_trajectory(result)

Arguments:

result adata frame of specific columns.

Method get_trajectory(): return testing results by the time this function is called. Note that
graphical test is carried out in a sequential manner. Users may want to review the results anytime.
Value returned by this function can possibly vary over time.

Usage:
GraphicalTesting$get_trajectory()

Method test_hypotheses(): test hypotheses using p-values (and other information in stats)
base on the current graph. All rows should have the same order number.

Usage:
GraphicalTesting$test_hypotheses(stats)

Arguments:
stats a data frame. It must contain the following columns:
order integer. P-values (among others) of hypotheses that can be tested at the same time
(e.g., an interim, or final analysis) should be labeled with the same order number. If a
hypothesis is not tested at a stage, simply don’t put it in stats with that order number.
hypotheses character. Name of hypotheses to be tested. They should be identical to those
when calling GraphicalTesting$new.
p nominal p-values.
info observed number of events or samples at test. These will be used to compute infor-
mation fractions in group sequential design.
max_info integers. Maximum information at test. At interim, max_info should be equal
to planned_max_info when calling GraphicalTesting$new. At the final stage of a
hypothesis, one can update it with observed numbers.

GraphicalTesting 29

Method test(): test hypotheses using p-values (and other information in stats) base on the
current graph. Users can call this function multiple times. P-values of the same order should be
passed through stats together. P-values of multiple orders can be passed together as well. For
example, if users only have p-values at current stage, they can call this function and update the
graph accordingly. In this case, column order in stats is a constant. They can call this function
again when p-values of next stage is available, where order is another integer. In simulation, if
p-values of all stages are on hand, users can call this function to test them all in a single pass. In
this case, column order in stats can have different values.

Usage:

GraphicalTesting$test(stats)

Arguments:
stats a data frame. It must contain the following columns:
order integer. P-values (among others) of hypotheses that can be tested at the same time
(e.g., an interim, or final analysis) should be labeled with the same order number. If a
hypothesis is not tested at a stage, simply don’t put it in stats with that order number. If
all p-values in stats are tested at the same stage, order can be absent.

hypotheses character. Name of hypotheses to be tested. They should be identical to those
when calling GraphicalTesting$new.

p nominal p-values.

info observed number of events or samples at test. These will be used to compute infor-
mation fractions in group sequential design.

max_info integers. Maximum information at test. At interim, max_info should be equal
to planned_max_info when calling GraphicalTesting$new. At the final stage of a
hypothesis, one can update it with observed numbers.

alpha_spent accumulative proportion of allocated alpha to be spent if alpha_spending =
"asUser”. Set it to NA_real_ otherwise. If no hypothesis uses "asUser” in stats, this
column could be ignored.

Returns: a data frame returned by get_current_testing_results. It contains details of each
of the testing steps.

Method get_current_testing_results(): return testing results with details by the time this
function is called. This function can be called by users by multiple times, thus the returned value
varies over time. This function is called by GraphicalTesting: : test, and returns a data frame
consisting of columns
hypothesis name of hypotheses.
obs_p_value observed p-values.
max_allocated_alpha maximum allocated alpha for the hypothesis.
decision 'reject' or 'accept’ the hypotheses.
stages stage of a hypothesis.
order order number that this hypothesis is tested for the last time. It is different from stages.
typeOfDesign name of alpha spending functions.

Usage:

GraphicalTesting$get_current_testing_results()

Method get_current_decision(): get current decisions for all hypotheses. Returned value
could changes over time because it depends on the stages being tested already.

30 GraphicalTesting

Usage:
GraphicalTesting$get_current_decision()

Returns: anamed vector of values "accept” or "reject”. Note that if a hypothesis is not yet
tested when calling this function, the decision for that hypothesis would be "accept”.

Method print(): generic function for print

Usage:
GraphicalTesting$print(graph = TRUE, trajectory = TRUE, ...)

Arguments:
graph logic. TRUE if visualizing the current graph, which can vary over time.
trajectory logic. TRUE if print the current data frame of trajectory, which can vary over time.

. other arguments supported in gMCPLite: :hGraph, e.g., trhw and trhh to control the size
of transition box, and trdigits to control the digits displayed for transition weights.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GraphicalTesting$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Example 1
dry-run to study the behavior of a graph
without group sequential design
if(interactive()){
eps <- .01
alpha <- c(.01, .04, 0, 0, 0)
transition <- matrix(c(
0, 0, 0, 0, 1,
0, 9, .75, 0, .25,
0, 1/2-eps/2, 0, eps, 1/2-eps/2,
0, 0, 0, 0, 0,
o, 1/2, 1/2, o, @
), nrow = 5, byrow = TRUE)

dummy can be anything, we don't actually use it
asf <- rep('asOF', 5)

dummy can be anything, we don't actually use it
max_info <- c(300, 1100, 1100, 1100, 500)

hs <= c('H1: UPCR IgA', 'H2: eGFR GN', 'H3: eGFR GN 10wk', 'H5: 2nd Endpoints', 'H4: eGFR IgA')
initialize an object
gt <- GraphicalTesting$new(alpha, transition, asf, max_info, hs)

print(gt)

reject hypotheses based on customized order

GraphicalTesting

to understand the behavior of a testing strategy
Any other rejection order is possible
gt$reject_a_hypothesis('H1: UPCR IgA')

print(gt)

gt$reject_a_hypothesis('H2: eGFR GN')
print(gt)

gt$reject_a_hypothesis('H4: eGFR IgA')
print(gt)

gt$reject_a_hypothesis('H3: eGFR GN 10wk')
print(gt)

gt$reset()
}

Example 2

Example modified from vignettes in gMCPLite:
Graphical testing for group sequential design
if(interactive()){

initial alpha split to each of the hypotheses
alpha <- c(.01, .01, .004, .0, .0005, .0005)

transition matrix of the initial graph
transition <- matrix(c(
0, 1, 0, 0, 0, 0,
, .5, .5, 0, 0,
0, 1, 0, 0,
, 9, 0, .5, .5,
, 0, 9, 0, 1,
.5, .5, 0, 0, 0, @
), nrow = 6, byrow = TRUE)
alpha spending functions per hypothesis
asf <- c('asUser', 'asOF', 'asUser', 'asOF', 'asOF', 'asOF')

planned maximum number of events per hypothesis
max_info <- c(295, 800, 310, 750, 500, 1100)

name of hypotheses

hs <- c¢('H1: 0OS sub',
'H2: 0S all',
'H3: PFS sub',
'H4: PFS all',
'H5: ORR sub',
'H6: ORR all')

gt <- GraphicalTesting$new(alpha, transition, asf, max_info, hs)

print initial graph
gt

31

32

GroupSequentialTest

nominal p-values at each stage
Note: p-values with same order are calculated with the same locked data
Note: alpha_spent is only specified for hypotheses using custom alpha
#i# spending function "asUser"”
stats <-
data. frame(
order = ¢c(1:3, 1:3, 1:2, 1:2, 1, 1),
hypotheses = c(rep('H1: 0OS sub', 3), rep('H2: 0S all', 3),
rep('H3: PFS sub', 2), rep('H4: PFS all', 2),
'"H5: ORR sub', 'H6: ORR all'),
p = c(.03, .0001, .000001, .2, .15, .1, .2, .001, .3, .2, .00001, .1),
info = c(185, 245, 295, 529, 700, 800, 265, 310, 675, 750, 490, 990),
is_final = c(F, F, T, F, F, T, F, T, F, T, T, T),
max_info = c(rep(295, 3), rep(800, 3), rep(310, 2), rep(750, 2), 490, 990),
alpha_spent = c(c(.1, .4, 1), rep(NA, 3), c(.3, 1), rep(NA, 2), NA, NA)
)

test the p-values from the first analysis, plot the updated graph
gt$test(stats %>% dplyr::filter(order==1))

test the p-values from the second analysis, plot the updated graph
gt$test(stats %>% dplyr::filter(order==2))

test the p-values from the third analysis, plot the updated graph
because no futher test would be done, displayed results are final
gt$test(stats %>% dplyr::filter(order==3))

plot the final status of the graph
print(gt, trajectory = FALSE)

you can get final testing results as follow
gt$get_current_testing_results()

if you want to see step-by-step details
print(gt$get_trajectory())

equivalently, you can call gt$test(stats) for only once to get same results.
gt$reset()
gt$test(stats)

if you only want to get the final testing results
gt$get_current_decision()

}

GroupSequentialTest Class of GroupSequentialTest

GroupSequentialTest 33

Description

Perform group sequential test for a single endpoint based on sequential one-sided p-values at each
stages. Selected alpha spending functions, including user-defined functions, are supported. Bound-
aries are calculated with ‘rpact‘. At the final analysis, adjustment can be applied for over-running or
under-running trial where observed final information is greater or lower than the planned maximum
information. See Wassmer & Brannath, 2016, p78f. The test is based on p-values not z statistics
because it is easier to not handling direction of alternative hypothesis in current implementation.
In addition, only one-sided test is supported which should be sufficient for common use in clinical
design.

Methods

Public methods:

e GroupSequentialTest$new()

* GroupSequentialTest$get_name()

* GroupSequentialTest$get_alpha()

* GroupSequentialTest$set_alpha_spending()
e GroupSequentialTest$get_alpha_spending()
* GroupSequentialTest$get_max_info()

* GroupSequentialTest$set_max_info()

* GroupSequentialTest$get_stage()

e GroupSequentialTest$reset()

e GroupSequentialTest$set_trajectory()

* GroupSequentialTest$get_trajectory()

* GroupSequentialTest$get_stage_level()

* GroupSequentialTest$test_one()

e GroupSequentialTest$test()

e GroupSequentialTest$print()

* GroupSequentialTest$clone()

Method new(): initialize a group sequential test. Now only support one-sided test based on
p-values.
Usage:
GroupSequentialTest$new(
alpha = 0.025,
alpha_spending = c("asP", "asOF", "asUser"),
planned_max_info,
name = "HQ",
silent = TRUE

)
Arguments:
alpha familywise error rate

alpha_spending alpha spending function. Use "asUser" if custom alpha spending schedule
is used.

34

GroupSequentialTest

planned_max_info integer. Planned maximum number of patients for non-tte endpoints or
number of events for tte endpoints

name character. Name of the hypothesis, e.g. endpoint, subgroup, etc. Optional.

silent TRUE if muting all messages.

Method get_name(): get name of hypothesis
Usage:
GroupSequentialTest$get_name()

Method get_alpha(): get overall alpha
Usage:
GroupSequentialTest$get_alpha()

Method set_alpha_spending(): set alpha spending function. This is useful when set *asUser’
at the final stage to adjust for an under- or over-running trial.

Usage:

GroupSequentialTest$set_alpha_spending(asf)

Arguments:

asf character of alpha spending function.

Method get_alpha_spending(): return character of alpha spending function
Usage:
GroupSequentialTest$get_alpha_spending()

Method get_max_info(): return planned maximum information

Usage:
GroupSequentialTest$get_max_info()

Method set_max_info(): set planned maximum information. This is used at the final stage to
adjust for an under- or over-running trial.

Usage:

GroupSequentialTest$set_max_info(obs_max_info)

Arguments:

obs_max_info integer. Maximum information, which could be observed number of patients or
events at the final stage.

Method get_stage(): get current stage.

Usage:
GroupSequentialTest$get_stage()

Method reset(): an object of class GroupSequentialTest is designed to be used sequentially
by calling GroupSequentialTest$test. When all planned tests are performed, no further anal-
ysis could be done. In that case keep calling GroupSequentialTest$test will trigger an error.
To reuse the object for a new set of staged p-values, call this function to reset the status to stage
1. See examples. This implementation can prevent the error that more than the planned number
of stages are tested.

GroupSequentialTest 35

Usage:
GroupSequentialTest$reset()

Method set_trajectory(): save testing result at current stage
Usage:
GroupSequentialTest$set_trajectory(result, is_final = FALSE)
Arguments:
result adata frame storing testing result at a stage.
is_final logical. TRUE if final test for the hypothesis, FALSE otherwise.

Method get_trajectory(): return testing trajectory until current stage. This function can be
called at any stage. See examples.

Usage:

GroupSequentialTest$get_trajectory()

Method get_stage_level(): compute boundaries given current (potentially updated) settings.
It returns different values if settings are changed over time.

Usage:
GroupSequentialTest$get_stage_level()

Method test_one(): test a hypothesis with the given p-value at current stage
Usage:
GroupSequentialTest$test_one(
p_value,
is_final,
observed_info,
alpha_spent = NA_real_
)

Arguments:

p_value numeric. A p-value.

is_final logical. TRUE if this test is carried out for the final analysis.

observed_info integer. Observed information at current stage. It can be the number of sam-
ples (non-tte) or number of events (tte) at test. If the current stage is final, observed_info
will be used to update planned_max_info, the alpha spending function (typeOfDesign in
rpact) will be updated to 'asUser', and the argument userAlphaSpending will be used
when calling rpact: : getDesignGroupSequential.

alpha_spent numeric if alpha_spending = "asUser". It must be between 0 and alpha, the
overall alpha of the test. NA_real_ for other alpha spending functions "asOF" and "asP".

Method test(): Carry out test based on group sequential design. If p_values is NULL, dummy
values will be use and boundaries are calculated for users to review.
Usage:
GroupSequentialTest$test(
observed_info,
is_final,
p_values = NULL,
alpha_spent = NULL

36 GroupSequentialTest

Arguments:

observed_info a vector of integers, observed information at stages.

is_final logical vector. TRUE if the test is for the final analysis.

p_values avector of p-values. If specified, its length should equal to the length of observed_info.

alpha_spent accumulative alpha spent at observed information. It is a numeric vector of val-
ues between 0 and 1, and of length that equals length(observed_info) if alpha-spending
function is "asUser"”. Otherwise NULL.

Method print(): generic function for print

Usage:
GroupSequentialTest$print()

Method clone(): The objects of this class are cloneable with this method.
Usage:
GroupSequentialTest$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Note: examples showed here replicate the results from
https://www.rpact.org/vignettes/planning/rpact_boundary_update_example/

Example 1. Generate boundaries for a pre-fix group sequential design
gst <- GroupSequentialTest$new(

alpha = .025, alpha_spending = 'asOF',

planned_max_info = 387)

without giving p-values, boundaries are returned without actual testing
gst$test(observed_info = c(205, 285, 393), is_final = c(FALSE, FALSE, TRUE))
gst

Example 2. Calculate boundaries with observed information at stages
No p-values are provided

get an error without resetting an used object
try(gst$test(observed_info = 500, is_final = FALSE))

reset the object for re-use

gst$reset()

gst$test(observed_info = c(205, 285, 393), is_final = c(FALSE, FALSE, TRUE))
gst

Example 3. Test stagewise p-values sequentially
gst$reset()

gst$test(observed_info = 205, is_final = FALSE, p_values = .09)
gst$test(285, FALSE, .006)

listener 37

print testing trajectory by now
gst

gst$test (393, TRUE, .002)

print all testing trajectory
gst

you can also test all stages at once

the result is the same as calling test() for each of the stages
gst$reset()

gst$test(c(205, 285, 393), c(FALSE, FALSE, TRUE), c(.09, .006, .002))
gst

Example 4. use user-define alpha spending
gst <- GroupSequentialTest$new(
alpha = .025, alpha_spending = 'asUser',
planned_max_info = 387)

gst$test(
observed_info = c(205, 285, 393),
is_final = c(FALSE, FALSE, TRUE),
alpha_spent = c(.005, .0125, .025))
gst

listener Define a Listener

Description
Define a listener. This is a user-friendly wrapper for the class constructor Listener$new. Users
who are not familiar with the concept of classes may consider using this wrapper directly.

Usage

listener(silent = FALSE)

Arguments

silent logical. TRUE to mute messages.

Examples

listener <- listener()

38

Listeners

Listeners Class of Listener

Description

Create a class of listener. A listener monitors the trial while checking condition of pre-defined
milestones. Actions are triggered and executed automatically.

Methods

Public methods:
e Listeners$new()
e Listeners$add_milestones()
e Listeners$get_milestones()
e Listeners$get_milestone_names()
e Listeners$monitor()
e Listeners$mute()
e Listeners$reset()
e Listeners$clone()

Method new(): initialize a listener
Usage:
Listeners$new(silent = FALSE)
Arguments:

silent logical. TRUE to mute messages.

Method add_milestones(): register milestones with listener. Order in ... matter as they are
scanned in that order. It is user’s responsibility to use reasonable order when calling this function,
otherwise, the result of Listener$monitor () can be problematic.

Usage:
Listeners$add_milestones(...)

Arguments:

. milestones

Method get_milestones(): return registered milestones
Usage:
Listeners$get_milestones(milestone_name = NULL)

Arguments:

milestone_name return Milestone object with given name(s). If NULL, all registered mile-
stones are returned.

Method get_milestone_names(): return names of registered milestones

Usage:

milestone 39

Listeners$get_milestone_names()
Method monitor(): scan, check, and trigger registered milestones. Milestones are triggered in
the order when calling Listener$add_milestones.

Usage:
Listeners$monitor(trial, dry_run)

Arguments:
trial aTrial object.
dry_run logical. See Controller: :run for more information.

Method mute(): mute all messages (not including warnings)

Usage:
Listeners$mute(silent)

Arguments:

silent logical.
Method reset(): reset all milestones registered to the listener. Usually, this is called before a
controller can run additional replicates of simulation.

Usage:

Listeners$reset()
Method clone(): The objects of this class are cloneable with this method.

Usage:
Listeners$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

#it

milestone Define a Milestone of a Trial

Description

Define a milestone of a trial. This is a user-friendly wrapper for the class constructor Milestones$new.
Users who are not familiar with the concept of classes may consider using this wrapper directly.

Usage

milestone(name, when, action = doNothing)

40 Milestones
Arguments
name character. Name of milestone.
when condition to check if this milestone should be triggered.
action function to execute when the milestone triggers. If no action to be executed but
simply need to record triggering time of a milestone, action can be its default
value, a built-in function doNothing.
Milestones Class of Milestones
Description

Create a class of milestone. An milestone means the time point to take an action, e.g., carry out
(futility, interim, final) analysis for add/remove arms, or stop a trial early. It can also be any more
general time point where trial data is used in decision making or adaptation. For example, one can
define a milestone for changing randomization scheme, sample size re-assessment, trial duration

extension etc.

Methods

Public methods:

e Milestones$new()

* Milestones$get_name()

* Milestones$get_type()

e Milestones$get_trigger_condition()

* Milestones$get_action()

e Milestones$set_dry_run()

* Milestones$execute_action()
e Milestones$get_trigger_status()

e Milestones$reset()

* Milestones$trigger_milestone()

e Milestones$mute()

* Milestones$clone()

Method new(): initialize milestone

Usage:

Milestones$new(name, type = name, trigger_condition, action = doNothing)

Arguments:

name character. Name of milestone.

type character vector. Milestone type(s) (futility, interim, final), a milestone can be of multiple
types. This is for information purpose so can be any string.

trigger_condition function to check if this milestone should trigger. See vignette Condition
System for Triggering Milestones ina Trial.

Milestones 41

action function to execute when the milestone triggers.

Method get_name(): return name of milestone

Usage:
Milestones$get_name()

Method get_type(): return type(s) of milestone

Usage:
Milestones$get_type()

Method get_trigger_condition(): return trigger_condition function

Usage:
Milestones$get_trigger_condition()

Method get_action(): return action function
Usage:
Milestones$get_action()

Method set_dry_run(): setif dry run should be carried out for the milestone. For more details,
refer to Controller: :run.

Usage:
Milestones$set_dry_run(dry_run)
Arguments:

dry_run logical.

Method execute_action(): execute action function

Usage:
Milestones$execute_action(trial)

Arguments:

trial aTrial object.

Method get_trigger_status(): return trigger status

Usage:
Milestones$get_trigger_status()

Method reset(): reset an milestone so that it can be triggered again. Usually, this is called
before the controller of a trial can run additional replicates of simulation.

Usage:
Milestones$reset()

Method trigger_milestone(): trigger an milestone (always TRUE) and execute action ac-
cordingly. It calls Trial$get_data_lock_time() to lock data based on conditions implemented in
Milestones$trigger_condition. If time that meets the condition cannot be found, Trial$get_data_lock_time()
will throw an error and stop the program. This means that user needs to adjust their trigger_condition

(e.g., target number of events (target_n_events) is impossible to reach).

42 PiecewiseConstantExponentiaRNG

Usage:
Milestones$trigger_milestone(trial)

Arguments:
trial aTrial object.

Method mute(): mute all messages (not including warnings)

Usage:
Milestones$mute(silent)

Arguments:
silent logical.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Milestones$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

#it

PiecewiseConstantExponentialRNG
Generate time-to-event endpoint from piecewise constant exponential
distribution

Description

Implementation is based on this algorithm.

Usage

PiecewiseConstantExponentialRNG(n, risk, endpoint_name)

Arguments
n number of random numbers
risk a data frame of columns

end_time End time for a constant risk in a time window. The start time of the
first time window is 0.

piecewise_risk A constant risk in a time window, which is absolute risk *
relative risk, or (hO * g) in the link.

hazard_ratio An optional column for simulating an active arm. If absent, a
column of 1s will be added. Equivalently, user can multiply piecewise_risk
by hazard_ratio manually and ignore this column.

endpoint_name name of endpoint

https://www.demogr.mpg.de/papers/technicalreports/tr-2010-003.pdf

plot.milestone_time_summary 43

Examples

example code
In this example, absolute risk in [@, 1) and [26, 52] are 0.0181 and
0.0027, respectively.
risk <- data.frame(
end_time = c(1, 4.33, 26.0, 52.0),
piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-4.01)
)
PiecewiseConstantExponentialRNG(10@, risk, 'PFS')

plot.milestone_time_summary
Plot Triggering Time of Milestones in Simulated Trials

Description

Plot Triggering Time of Milestones in Simulated Trials

Usage
S3 method for class 'milestone_time_summary'
plot(x, ...)
Arguments
X an object returned by summarizeMilestoneTime().

currently not supported.

plot.three_state_model
Plot result of three-state ill-death model

Description

Plot result of three-state ill-death model

Usage
S3 method for class 'three_state_model'’
plot(x, ...)
Arguments
X an object returned by solveThreeStateModel ().

currently not supported.

44 solveMixtureExponentialDistribution

rconst Generate constant variable

Description

A random number generator returning only a constant. This can be used to set dropout time. Cur-
rently it is default value of dropout time, with ‘value = Inf*.

Usage

rconst(n, value)

Arguments
n integer. Number of observations.
value value of constant observations.

solveMixtureExponentialDistribution

Solve parameters in a mixture exponential distribution

Description

Assume that the overall population is a mixture of two exponential distributions with medians

mediani (mq) and median2 (ms). Given the proportion of the first component (p;) and the overall
median m, we have

p1(1 . eflog(Q)m/ml) + (1 7p1)(1 e log(2)m/m2) — 1/2

This function computes mo or m given p; and m;.

Usage

solveMixtureExponentialDistribution(
weight1,
medianT,
median2 = NULL,
overall_median = NULL

solveMixtureExponentialDistribution 45

Arguments
weighti numeric. The proportion of the first component.
mediani numeric. Median of the first component.
median?2 numeric. Median of the second component. If NULL, then overall_median

must be specified, and this function will calculate and return median2.

overall_median numeric. Median of the overall population. If NULL, then median2 must be
specified, and this function will calculate and return overall_median.

Value

a named vector of median2 or overall_median.

Examples
library(dplyr)

median2 <-
solveMixtureExponentialDistribution(
weightl = .3,
medianl = 10,
overall_median = 8)

median2

n <- 1e6
ifelse(
runif(n) < .3,
rexp(n, rate=log(2)/10),
rexp(n, rate=log(2)/median2)) %>%
median() ## should be close to 8

overall_median <-
solveMixtureExponentialDistribution(

weightl = .4,
medianl = 12,
median2 = 4)

overall_median

ifelse(
runif(n) < .4,
rexp(n, rate=log(2)/12),
rexp(n, rate=log(2)/4)) %>%
median() ## should be close to overall_median

46 solveThreeStateModel

solveThreeStateModel Solve parameters in a three-state ill-death model

Description

The ill-death model consists of three states, stable, progression, and death. It can be used to
model the progression-free survival (PFS) and overall survival (OS) in clinical trial simulation. It
models the correlation PFS and OS without assumptions on latent status and copula. Also, it does
not assume PFS and OS satisfy the proportional hazard assumption simultaneously. The three-
state ill-death model ensure the nice property that PFS <= OS with probability one. However, it
requires three hazard parameters under the homogeneous Markov assumption. In practice, hazard
parameters are hard to specify intuitively especially when no trial data is available at the planning
stage.

This function reparametrizes the ill-death model in term of three parameters, i.e. median of PFS,
median of OS, and correlation between PFS and OS. The output of this function, which consists
of the three hazard parameters, can be used to generate PFS and OS with desired property. It
can be used with the built-in data generator CorrelatedPfsAndOs3() when defining endpoints in
TrialSimulator.

Usage

solveThreeStateModel (
median_pfs,

median_os,
corr,
h12 = seq(@.05, 0.2, length.out = 50)
)
Arguments
median_pfs numeric. Median of PFS.
median_os numeric. Median of OS.
corr numeric vector. Pearson correlation coefficients between PFS and OS.
h12 numeric vector. A set of hazard from progression to death that may induce the
target correlation corr given median_pfs and median_os. solveThreeStateModel
will do a grid search to find the best hazard parameters that matches to the me-
dians of PFS and OS, and their correlations.
Value

a data frame with columns:

corr target Peason’s correlation coefficients.
h@1 hazard from stable to progression.

h@2 hazard from stable to death.

h12 hazard from progression to death.

error absolute error between target correlation and correlation derived from h@1, h@2, and h12.

StaggeredRecruiter 47

Examples
dat <- CorrelatedPfsAndOs3(1e6, hol = .1, he2 = .05, h12 = .12)
cor(datpfs, datos) ## 0.65
median(dat$pfs) ## 4.62
median(dat$os) ## 9.61
find h@1, he2, h12 that can match to median_pfs, median_os and corr
should be close to h@1 = 0.10, h@2 = 0.05, h12 = 0.12 when corr = 0.65

ret <- solveThreeStateModel(median_pfs = 4.6, median_os = 9.6,
corr = seq(.5, .7, length.out=5))

ret
StaggeredRecruiter Generate enrollment time from piecewise constant uniform distribu-
tion
Description

Accrual rate can be 10 patients/months for the first 2 months, 20 patients/ months for the second 2
months, and eventually 30 patients/months until the end of trial.

Usage

StaggeredRecruiter(n, accrual_rate)

Arguments

n number of random numbers

accrual_rate a data frame of columns end_time: End time for a constant rate in a time win-
dow. The start time of the first time window is 0. piecewise_rate: A constant
rate in a time window. So the number of patients being recruited in that window
is window length x piecewise_rate

Examples

accrual_rate <- data.frame(
end_time = c(12, 13:17, Inf),
piecewise_rate = c(15, 15 + 6 * (1:5), 45)
)

accrual_rate <- data.frame(
end_time = c(3, 4, 5, 8, Inf),
piecewise_rate = c(1, 2, 2, 3, 4)

)

StaggeredRecruiter (30, accrual_rate)

48

summarizeDataFrame

summarizeDataFrame Summarize A Data Frame

Description

A minimum alternative to summarytools: :dfSummary to avoid package dependency.

Usage

summarizeDataFrame(
data,
exclude_vars = NULL,
tte_vars = NULL,
event_vars = NULL,
categorical_vars = NULL,

title = "Summary"”,
sub_title = ""
)
Arguments
data a data frame.

exclude_vars columns to be excluded from summary.

tte_vars character. Vector of time-to-event variables.

event_vars character. Vector of event indicators. Every time-to-event variable should be

corresponding to an event indicator.
categorical_vars

character. Vector of categorical variables. This can be used to specify variables
with limited distinct values as categorical variables in summary.

title title of the summary report.
sub_title sub-title.
Value

a data frame of summary

Examples
set.seed(123)
n <- 1000

data <- data.frame(
age = rnorm(n, 65, 10),

gender = sample(c('M', 'F', NA), n, replace = TRUE, prob = c(.4,

time_to_death = rexp(n, .01),
death = rbinom(n, 1, .6),

.4, .2)),

summarizeMilestoneTime 49

type = sample(LETTERS[1:8], n, replace = TRUE)
)

summarizeDataFrame(data, tte_vars = 'time_to_death', event_vars = 'death')

summarizeMilestoneTime
Summary of Milestone Time from Simulated Trials

Description

Summary of Milestone Time from Simulated Trials

Usage

summarizeMilestoneTime (output)

Arguments
output a data frame. It assumes that triggering time of milestones are store in columns
milestone_time_<...>. It can be data frames returned by controller$get_output().
Value

A data frame of class milestone_time_summary.

Examples

a minimum, meaningful, and executable example,
where a randomized trial with two arms is simulated and analyzed.

control <- arm(name = 'control arm')
active <- arm(name = 'active arm')

pfs_in_control <- endpoint(name = 'PFS', type = 'tte', generator = rexp, rate = log(2) / 5)
control$add_endpoints(pfs_in_control)

pfs_in_active <- endpoint(name = 'PFS', type = 'tte', generator = rexp, rate = log(2) / 6)
active$add_endpoints(pfs_in_active)

accrual_rate <- data.frame(end_time = c(10, Inf), piecewise_rate = c(30, 50))
trial <- trial(name = 'trial',

n_patients = 1000,

duration = 40,

enroller = StaggeredRecruiter,

accrual_rate = accrual_rate,

dropout = rweibull, shape = 2, scale = 38,

silent = TRUE)

50 trial

trial$add_arms(sample_ratio = c(1, 1), control, active)

action_at_final <- function(trial, milestone_name){
locked_data <- trial$get_locked_data(milestone_name)
fitLogrank(Surv(PFS, PFS_event) ~ arm, placebo = 'control arm',

data = locked_data, alternative = 'less')
invisible(NULL)
3
final <- milestone(name = 'final analysis',

action = action_at_final,
when = eventNumber(endpoint = 'PFS', n = 300))

listener <- listener(silent = TRUE)
listener$add_milestones(final)

controller <- controller(trial, listener)
controller$run(n = 10, plot_event = FALSE, silent = TRUE)

output <- controllers$get_output()
time <- summarizeMilestoneTime(output)

time

plot(time)

trial Define a Trial

Description

Define a trial. This is a user-friendly wrapper for the class constructor Trial$new. Users who are
not familiar with the concept of classes may consider using this wrapper directly.

Usage

trial(
name,
n_patients,
duration,
description = name,
seed = NULL,
enroller,
dropout = NULL,
silent = FALSE,

trial 51

Arguments
name character. Name of trial.
n_patients integer. Maximum number of patients could be enrolled to the trial.
duration Numeric. Trial duration.
description character. Optional for description of the trial. By default it is set to be trial’s
name.
seed random seed. If NULL, set.seed() will not be called, which uses seed set out-
side.
enroller a function returning a vector enrollment time for patients. Its first argument is
the number of enrolled patients.
dropout a function returning a vector of dropout time for patients. Its first argument is
the number of enrolled patients.
silent logical. TRUE to mute messages.
arguments of enroller and dropout.
Examples

riskl <- data.frame(

end_time = c(1, 10, 26.0, 52.0),

piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-3.01)
)

pfsl <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = riskl, endpoint_name = 'pfs')

orr1l <- endpoint(
name = 'orr', type = 'non-tte',
readout = c(orr=1), generator = rbinom,
size = 1, prob = .4)

placebo <- arm(name = 'pbo')
placebo$add_endpoints(pfs1, orril)

risk2 <- riskil
risk2$hazard_ratio <- .8

pfs2 <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = risk2, endpoint_name = 'pfs')

orr2 <- endpoint(
name = 'orr', type = 'non-tte',
generator = rbinom, readout = c(orr=3),
size = 1, prob = .6)

active <- arm(name = 'ac')

52 Trials

active$add_endpoints(pfs2, orr2)

Plan a trial, Trial-3415, of up to 100 patients.
Enrollment time follows an exponential distribution, with median 5
trial <- trial(
name = 'Trial-3415', n_patients = 100,
seed = 31415926, duration = 100,
enroller = rexp, rate = log(2) / 5)
trial$add_arms(sample_ratio = c(1, 2), placebo, active)

trial

Trials Class of Trial

Description

Create a class of trial.

Methods
Public methods:

* Trials$new()

* Trials$get_trial_data()

e Trials$get_duration()

* Trials$set_duration()

e Trials$set_enroller()

* Trials$get_enroller()

* Trials$set_dropout()

e Trials$get_dropout()

* Trials$roll_back()

e Trials$remove_arms()

e Trials$update_sample_ratio()
* Trials$add_arms()

e Trials$get_name()

* Trials$get_description()
e Trials$get_arms()

e Trials$get_arms_name()

* Trials$get_number_arms()
e Trials$has_arm()

e Trials$get_an_arm()

* Trials$get_sample_ratio()

Trials

* Trials$get_number_patients()

* Trials$get_number_enrolled_patients()
* Trials$get_number_unenrolled_patients()
e Trials$get_randomization_queue()

e Trials$get_enroll_time()

* Trials$enroll_patients()

e Trials$set_current_time()

e Trials$get_current_time()

* Trials$get_event_tables()

* Trials$get_data_lock_time_by_event_number()
e Trials$get_data_lock_time_by_calendar_time()
* Trials$get_locked_data()

* Trials$get_locked_data_name()

* Trials$get_event_number()

e Trials$save_milestone_time()

* Trials$get_milestone_time()

e Trials$lock_data()

e Trials$event_plot()

e Trials$censor_trial_data()

e Trials$save()

e Trials$bind()

e Trials$save_custom_data()

* Trials$get_custom_data()

e Trials$get()

e Trials$get_output()

* Trials$mute()

¢ Trials$independentIncrement()

e Trials$dunnettTest()

* Trials$closedTest()

* Trials$get_seed()

e Trials$print()

* Trials$get_snapshot_copy()

* Trials$make_snapshot()

e Trials$make_arms_snapshot()

e Trials$reset()

* Trials$set_arm_added_time()

* Trials$get_arm_added_time()

e Trials$set_arm_removal_time()

* Trials$get_arm_removal_time()

e Trials$clone()

Method new(): initialize a trial

54

Trials

Usage:

Trials$new(
name,
n_patients,
duration,
description = name,
seed = NULL,
enroller,
dropout = NULL,
silent = FALSE,

)

Arguments:

name character. Name of trial.

n_patients integer. Maximum number of patients could be enrolled to the trial.

duration Numeric. Trial duration.

description character. Optional for description of the trial. By default it is set to be trial’s
name.

seed random seed. If NULL, set.seed() will not be called, which uses seed set outside.

enroller a function returning a vector enrollment time for patients. Its first argument is the
number of enrolled patients.

dropout a function returning a vector of dropout time for patients. Its first argument is the
number of enrolled patients.

silent logical. TRUE to mute messages.
. arguments of enroller and dropout.

Method get_trial_data(): return trial data of enrolled patients at the time of this function is
called

Usage:
Trials$get_trial_data()

Method get_duration(): return maximum duration of a trial

Usage:
Trials$get_duration()

Method set_duration(): set trial duration in an adaptive designed trial. All patients enrolled
before resetting the duration are truncated (non-tte endpoints) or censored (tte endpoints) at the
original duration. Remaining patients are re-randomized. Now new duration must be longer than
the old one.

Usage:

Trials$set_duration(duration)

Arguments:

duration new duration of a trial. It must be longer than the current duration.

Method set_enroller(): setrecruitment curve when initialize a trial.

Trials

55

Usage:
Trials$set_enroller(func, ...)
Arguments:
func function to generate enrollment time. It can be built-in function like ‘rexp‘ or customized
functions like ‘StaggeredRecruiter*.
. arguments for func.

Method get_enroller(): get function of recruitment curve
Usage:
Trials$get_enroller()

Method set_dropout(): set distribution of drop out time. This can be done when initialize a
trial, or when updating a trial in adaptive design.

Usage:

Trials$set_dropout(func, ...)

Arguments:

func function to generate dropout time. It can be built-in function like ‘rexp‘ or customized
functions.

. arguments for func.

Method get_dropout(): get generator of dropout time

Usage:
Trials$get_dropout()

Method roll_back(): roll back data to current time of trial. By doing so, Trial$trial_data
will be cut at current time, and data after then are deleted. However, Trial$enroll_time after
current time are kept unchanged because that is planned enrollment curve.

Usage:
Trials$roll_back()

Method remove_arms(): remove arms from a trial. enroll_patients() will be always called
at the end to enroll all remaining patients after Trial$get_current_time(). This function may
be used with futility analysis, dose selection, enrichment analysis (sub-population) or interim
analysis (early stop for efficacy)

Usage:
Trials$remove_arms(arms_name)

Arguments:
arms_name character vector. Name of arms to be removed.

Method update_sample_ratio(): update sample ratios of arms. This could happen after an
arm is added or removed. Note that we may update sample ratios of unaffected arms as well.
Once sample ratio is updated, trial data should be rolled back with updated randomization queue.
Data of unenrolled patients should be re-sampled as well.

Usage:
Trials$update_sample_ratio(arm_names, sample_ratios)

56

Trials

Arguments:
arm_names character vector. Name of arms.

sample_ratios numeric vector. New sample ratios of arms. If sample ratio is a whole number,
the permuted block randomization is adopted; otherwise, sample() will be used instead,
which can cause imbalance between arms by chance. However, this is fine for simulation.

Method add_arms(): add one or more arms to the trial. enroll_patients() will be called
at the end to enroll all remaining patients in private$randomization_queue. This function
can be used in two scenarios. (1) add arms right after a trial is created (i.e., Trial$new(...)).
sample_ratio and arms added through ... should be of same length. (2) add arms to a trial
already with arm(s)

Usage:
Trials$add_arms(sample_ratio, ...)
Arguments:

sample_ratio integer vector. Sample ratio for permuted block randomization. It will be ap-
pended to existing sample ratio in the trial.
. one or more objects of class Arm. One exception in ... is an argument enforce. When

enforce = TRUE, sample ratio of newly added arm. It rolls back all patients after Trial$get_current_time(),

i.e. redo randomization for those patients. This can be useful to add arms one by one when
creating a trial. Note that we can run Trial$add_arm(sample_ratio1, arm1) followed by
Trial$add_arm(sample_ratio2, enforce = TRUE, arm2). We would expected similar
result with Trial$add_arms(c(sample_ratiol, sample_ratio2), arml, arm2). Note
that these two method won’t return exactly the same trial because randomization_queue
were generated twice in the first approach but only once in the second approach. But statis-
tically, they are equivalent and of the same distribution.

Method get_name(): return name of trial

Usage:
Trials$get_name()

Method get_description(): return description of trial

Usage:
Trials$get_description()

Method get_arms(): return a list of arms in the trial

Usage:
Trials$get_arms()

Method get_arms_name(): return arms’ name of trial

Usage:
Trials$get_arms_name()

Method get_number_arms(): get number of arms in the trial

Usage:
Trials$get_number_arms()

Trials 57

Method has_arm(): check if the trial has any arm. Return TRUE or FALSE.
Usage:
Trials$has_arm()

Method get_an_arm(): return an arm

Usage:
Trials$get_an_arm(arm_name)

Arguments:

arm_name character, name of arm to be extracted
Method get_sample_ratio(): return current sample ratio of the trial. The ratio can probably
change during the trial (e.g., arm is removed or added)

Usage:
Trials$get_sample_ratio(arm_names = NULL)

Arguments:

arm_names character vector of arms.

Method get_number_patients(): return number of patients when planning the trial
Usage:
Trials$get_number_patients()
Method get_number_enrolled_patients(): return number of enrolled (randomized) patients
Usage:
Trials$get_number_enrolled_patients()
Method get_number_unenrolled_patients(): return number of unenrolled patients
Usage:

Trials$get_number_unenrolled_patients()

Method get_randomization_queue(): return randomization queue of planned but not yet
enrolled patients. This function does not update randomization_queue, just return its value for
debugging purpose.

Usage:

Trials$get_randomization_queue(index = NULL)

Arguments:

index index to be extracted. Return all queue if NULL.

Method get_enroll_time(): return enrollment time of planned but not yet enrolled patients.
This function does not update enroll_time, just return its value for debugging purpose.

Usage:
Trials$get_enroll_time(index = NULL)

Arguments:
index index to extract. Return all enroll time if NULL.

Trials

Method enroll_patients(): assign new patients to pre-planned randomization queue at pre-
specified enrollment time.

Usage:
Trials$enroll_patients(n_patients = NULL)

Arguments:
n_patients number of new patients to be enrolled. If NULL, all remaining patients in plan are
enrolled. Error may be triggered if n_patients is greater than remaining patients as planned.

Method set_current_time(): set current time of a trial. Any data collected before could not
be changed. private$now should be set after a milestone is triggered (through Milestones class,
futility, interim, etc), an arm is added or removed at a milestone

Usage:
Trials$set_current_time(time)

Arguments:
time current calendar time of a trial.

Method get_current_time(): return current time of a trial

Usage:
Trials$get_current_time()

Method get_event_tables(): count accumulative number of events (for TTE) or non-missing
samples (otherwise) over calendar time (enroll time + tte for TTE, or enroll time + readout other-

wise)
Usage:
Trials$get_event_tables(arms = NULL, ...)

Arguments:
arms a vector of arms’ name on which the event tables are created. if NULL, all arms in the trial
will be used.
. subset conditions compatible with dplyr::filter. Event tables will be counted on subset
of trial data only.

Method get_data_lock_time_by_event_number(): given a set of endpoints and target num-
ber of events, determine the data lock time for a milestone (futility, interim, final, etc.). This
function does not change trial object (e.g. rolling back not yet randomized patients after the found

data lock time).

Usage:
Trials$get_data_lock_time_by_event_number(
endpoints,
arms,
target_n_events,
type = c("all”, "any"),

)

Arguments:

Trials

59

endpoints character vector. Data lock time is determined by a set of endpoints.

arms a vector of arms’ name on which number of events will be counted.

target_n_events target number of events for each of the endpoints.

type all if all target number of events are reached. any if the any target number of events is

reached.
. subset conditions compatible with dplyr::filter. Number Time of milestone is based
on event counts on the subset of trial data.

Returns: data lock time

Method get_data_lock_time_by_calendar_time(): given the calendar time to lock the data,
return it with event counts of each of the endpoints.

Usage:
Trials$get_data_lock_time_by_calendar_time(calendar_time, arms)

Arguments:
calendar_time numeric. Calendar time to lock the data
arms a vector of arms’ name on which number of events will be counted.

Returns: data lock time

Method get_locked_data(): return locked data for a milestone

Usage:
Trials$get_locked_data(milestone_name)

Arguments:
milestone_name character, milestone name of which the locked data to be extracted.
Method get_locked_data_name(): return names of locked data

Usage:
Trials$get_locked_data_name()

Method get_event_number(): return number of events at lock time of milestones

Usage:
Trials$get_event_number(milestone_name = NULL)

Arguments:
milestone_name names of triggered milestones. Use all triggered milestones if NULL.
Method save_milestone_time(): save time of a new milestone.

Usage:
Trials$save_milestone_time(milestone_time, milestone_name)

Arguments:
milestone_time numeric. Time of new milestone.
milestone_name character. Name of new milestone.
Method get_milestone_time(): return milestone time when triggering a given milestone

Usage:

60 Trials

Trials$get_milestone_time(milestone_name = NULL)

Arguments:

milestone_name character. Name of milestone. If NULL, time of all triggered milestones are
returned.

Method lock_data(): lock data at specific calendar time. For time-to-event endpoints, their
event indicator *_event should be updated accordingly. Locked data should be stored separately.
DO NOT OVERWRITE/UPDATE private$trial_data! which can lose actual time-to-event infor-
mation. For example, a patient may be censored at the first data lock. However, he may have
event being observed in a later data lock.

Usage:
Trials$lock_data(at_calendar_time, milestone_name)

Arguments:
at_calendar_time time point to lock trial data
milestone_name assign milestone name as the name of locked data for future reference.

Method event_plot(): plot of cumulative number of events/samples over calendar time.

Usage:
Trials$event_plot()

Method censor_trial_data(): censor trial data at calendar time

Usage:

Trials$censor_trial_data(
censor_at = NULL,
selected_arms = NULL,
enrolled_before = Inf

)

Arguments:

censor_at time of censoring. It is set to trial duration if NULL.

selected_arms censoring is applied to selected arms (e.g., removed arms) only. If NULL, it will
be set to all available arms in trial data. Otherwise, censoring is applied to user-specified
arms only. This is necessary because number of events/sample size in removed arms should
be fixed unchanged since corresponding milestone is triggered. In that case, one can update
trial data by something like censor_trial_data(censor_at =milestone_time, selected_arms
= removed_arms).

enrolled_before censoring is applied to patients enrolled before specific time. This argument
would be used when trial duration is updated by set_duration. Adaptation happens when
set_duration is called so we fix duration for patients enrolled before adaptation to main-
tain independent increment. This should work when trial duration is updated for multiple
times.

Method save(): save a single value or a one-row data frame to trial’s output for further analy-
sis/summary later.

Usage:
Trials$save(value, name = "", overwrite = FALSE)

Trials 61

Arguments:

value value to be saved. It can be a vector (of length 1) or a data frame (of one row).

name character to name the saved object. It will be used to name a column in trial’s output
if value is a vector. If value is a data frame, name will be the prefix pasted with the
column name of value in trial’s output. If user want to use value’s column name as is
in trial’s output, set name to be '' as default. Otherwise, column name would be, e.g.,
"{name}_<{names(value)}>".

overwrite logic. TRUE if overwriting existing entries with warning, otherwise, throwing an
error and stop.

Method bind(): row bind a data frame to existing data frame. If name is not existing in
Trial, then it is equivalent to Trial$save. Extra columns in value are ignored. Columns in
Trial$custom_datal[name]] but not in value are filled with NA.

Usage:

Trials$bind(value, name)

Arguments:

value a data frame to be saved. It can consist of one or multiple rows.

name character. Name of object to be saved.

Method save_custom_data(): save arbitrary (number of) objects into a trial so that users can
use those to control the workflow. Most common use case is to store simulation parameters to be
used in action functions.

Usage:
Trials$save_custom_data(value, name, overwrite = FALSE)

Arguments:

value value to be saved. Any type.

name character. Name of the value to be accessed later.

overwrite logic. TRUE if overwriting existing entries with warning, otherwise, throwing an
error and stop.

Method get_custom_data(): return saved custom data of specified name.

Usage:
Trials$get_custom_data(name)

Arguments:
name character. Name of custom data to be accessed.
Method get(): alias of function get_custom_data to make it short and cool.

Usage:
Trials$get(name)

Arguments:
name character. Name of custom data to be accessed.
Method get_output(): return a data frame of all current outputs saved by calling save.

Usage:

62

Trials

Trials$get_output(cols = NULL, simplify = TRUE)
Arguments:

cols columns to be returned from Trial$output. If NULL, all columns are returned.

simplify logical. Return value rather than a data frame of one column when length(col) ==
1 and simplify == TRUE.

Method mute(): mute all messages (not including warnings)
Usage:
Trials$mute(silent)

Arguments:

silent logical.

Method independentIncrement(): calculate independent increments from a given set of mile-
stones

Usage:
Trials$independentIncrement(
formula,
placebo,
milestones,
alternative,
planned_info,

)

Arguments:

formula An object of class formula that can be used with survival::coxph. Must consist
arm and endpoint in data. No covariate is allowed. Stratification variables are supported
and can be added using strata(...).
placebo character. String of placebo in trial’s locked data.
milestones acharacter vector of milestone names in the trial, e.g., listener$get_milestone_names().
alternative acharacter string specifying the alternative hypothesis, must be one of "greater”
or "less"”. No default value. "greater” means superiority of treatment over placebo is es-
tablished by an hazard ratio greater than 1 when a log-rank test is used.

planned_info a vector of planned accumulative number of event of time-to-event endpoint.
It is named by milestone names. Note: planned_info can also be a character "oracle”
so that planned number of events are set to be observed number of events, in that case
inverse normal z statistics equal to one-sided logrank statistics. This is for the purpose of
debugging only. In formal simulation, "oracle” should not be used if adaptation is present.
Pre-fixed planned_info should be used to create weights in combination test that controls
the family-wise error rate in the strong sense.
. subset condition that is compatible with dplyr::filter. survdiff will be fitted on this
subset only to compute one-sided logrank statistics. It could be useful when a trial consists
of more than two arms. By default it is not specified, all data will be used to fit the model.

Returns: This function returns a data frame with columns:

p_inverse_normal one-sided p-value for inverse normal test based on logrank test (alternative
hypothesis: risk is higher in placebo arm). Accumulative data is used.

Trials

63

z_inverse_normal z statistics of p_inverse_normal. Accumulative data is used.

p_lr one-sided p-value for logrank test (alternative hypothesis: risk is higher in placebo arm).
Accumulative data is used.

z_1r z statistics of p_1r. Accumulative data is used.

info observed accumulative event number.

planned_info planned accumulative event number.

info_pbo observed accumulative event number in placebo.
info_trt observed accumulative event number in treatment arm.
wt weights in z_inverse_normal.

Examples:

\dontrun{

trial$independentIncrement(Surv(pfs, pfs_event) ~ arm, 'pbo',
listener$get_milestone_names(),
'less', 'oracle')

3

Method dunnettTest(): carry out closed test based on Dunnett method under group sequential
design.

Usage:

Trials$dunnettTest(
formula,
placebo,
treatments,
milestones,
alternative,
planned_info,

)

Arguments:

formula An object of class formula that can be used with survival::coxph. Must consist
arm and endpoint in data. No covariate is allowed. Stratification variables are supported
and can be added using strata(...).

placebo character. Name of placebo arm.
treatments character vector. Name of treatment arms to be used in comparison.

milestones character vector. Names of triggered milestones at which either adaptation is ap-
plied or statistical testing for endpoint is performed. Milestones in milestones does not
need to be sorted by their triggering time.

alternative acharacter string specifying the alternative hypothesis, must be one of "greater’
or "less"”. No default value. "greater” means superiority of treatment over placebo is es-
tablished by an hazard ratio greater than 1 when a log-rank test is used.

planned_info a data frame of planned number of events of time-to-event endpoint in each
stage and each arm. Milestone names, i.e., milestones are row names of planned_info,
and arm names, i.e., c(placebo, treatments) are column names. Note that it is not the
accumulative but stage-wise event numbers. It is usually not easy to determine these num-
bers in practice, simulation may be used to get estimates. Note: planned_info can also

Trials

be a character "default” so that planned_info are set to be number of newly random-
ized patients in the control arm in each of the stages. This assumes that event rate do not
change over time and/or sample ratio between placebo and a treatment arm does not change
as well, which may not be true. It is for the purpose of debugging or rapid implementation
only. Using simulation to pick planned_info is recommended in formal simulation study.
Another issue with planned_info set to be "default” is that it is possible patient recruit-
ment is done before a specific stage, as a result, planned_info is zero which can crash the
program.

. subset condition that is compatible with dplyr::filter. survdiff will be fitted on this
subset only to compute one-sided logrank statistics. It could be useful when comparison is
made on a subset of treatment arms. By default it is not specified, all data (placebo plus one
treatment arm at a time) in the locked data are used to fit the model.

Details: This function computes stage-wise p-values for each of the intersection hypotheses
based on Dunnett test. If only one treatment arm is present, it is equivalent to compute the stage-
wise p-values of elemental hypotheses. This function also computes inverse normal combination
test statistics at each of the stages. The choice of planned_info can affect the calculation
of stage-wise p-values. Specifically, it is used to compute the columns observed_info and
p_inverse_normal in returned data frame, which will be used in Trial$closedTest(). The
choice of planned_info can affect the result of Trial$closedTest () so user should chose it
with caution.

Note thatin Trial$closedTest (), observed_info, which is derived from planned_info, will
lead to the same closed testing results up to a constant. This is because the closed test uses in-
formation fraction observed_info/sum(observed_info). As a result, setting planned_info
to, e.g., 10 * planned_info should give same closed test results.

Based on numerical study, setting planned_info = "default” leads to a much higher power
(roughly 10%) than setting planned_info to median of event numbers at stages, which can be
determined by simulation. I am not sure if regulator would support such practice. For example,
if a milestone (e.g., interim analysis) is triggered at a pre-specified calendar time, the number
of randomized patients is random and is unknown when planning the trial. If I understand it
correctly, regulator may want the information fraction in closed test (combined with Dunnett
test) to be pre-fixed. In addition, this choice for planned_info assumes that the event rates
does not change over time which is obviously not true. It is recommended to always use pre-
fixed planned_info for restrict control of family-wise error rate. It should be pointed out that
the choice of pre-fixed planned_info can affect statistical power significantly so fine-tuning
may be required.

Returns: alist with element names like arm_name, arm1_name |arm2_name, arm1_name |arm2_name | arm3_name,
etc., i.e., all possible combination of treatment arms in comparison. Each element is a data

frame, with its column names self-explained. Specifically, the columns p_inverse_normal,
observed_info, is_final can be used with GroupSequentialTest to perform significance

test.

Examples:

\dontrun{

trial$dunnettTest(Surv(pfs, pfs_event) ~arm, 'pbo', c('high dose', 'low dose'),
listener$get_milestone_names(), 'default')

Method closedTest(): perform closed test based on Dunnett test

Trials

65

Usage:
Trials$closedTest(

dunnett_test,

treatments,

milestones,

alpha,

alpha_spending = c("asP"”, "asOF")
)

Arguments:

dunnett_test object returned by Trial$dunnettTest().

treatments character vector. Name of treatment arms to be used in comparison.

milestones character vector. Names of triggered milestones at which significance testing for
endpoint is performed in closed test. Milestones in milestones does not need to be sorted
by their triggering time.

alpha numeric. Allocated alpha.

alpha_spending alpha spending function. It can be "asP"” or "asOF". Note that theoretically
it can be "asUser", but it is not tested. It may be supported in the future.

Returns: a data frame of columns arm, decision (final decision on a hypothesis at the end
of trial, "accept” or "reject”), milestone_at_reject, and reject_time. If a hypothesis is
accepted at then end of a trial, milestone_at_reject is NA, and reject_time is Inf.

Note that if a hypothesis is tested at multiple milestones, the final decision will be "accept”
if it is accepted at at least one milestone. The decision is "reject” only if the hypothesis is
rejected at all milestones.

Examples:

\dontrun{
dt <- trial$dunnettTest(
Surv(pfs, pfs_event) ~ arm,
placebo = 'pbo’,
treatments = c('high dose', 'low dose'),
milestones = c('dose selection', 'interim', 'final'),
data.frame(pbo = c(100, 160, 80),
low = c(100, 160, 80),
high = c(100, 160, 80),
row.names = c('dose selection', 'interim', 'final'))

trial$closedTest(dt, treatments = c('high dose', 'low dose'),
milestones = c('interim', 'final'),
alpha = 0.025, alpha_spending = 'asOF')

Method get_seed(): return random seed

Usage:
Trials$get_seed()

Method print(): print a trial

66

Trials

Usage:
Trials$print()
Method get_snapshot_copy(): return a snapshot of a trial before it is executed.
Usage:
Trials$get_snapshot_copy()

Method make_snapshot(): make a snapshot before running a trial. This can be useful when
resetting a trial. This is only called when initializing a “Trial‘ object, when arms have not been
added yet.

Usage:
Trials$make_snapshot ()

Method make_arms_snapshot(): make a snapshot of arms
Usage:

Trials$make_arms_snapshot()

Method reset(): reset a trial to its snapshot taken before it was executed. Seed will be reas-
signed with a new one. Enrollment time are re-generated. If the trial already have arms when this
function is called, they are added back to recruit patients again.

Usage:
Trials$reset()
Method set_arm_added_time(): save time when an arm is added to the trial

Usage:
Trials$set_arm_added_time(arm, time)

Arguments:
arm name of added arm.
time time when an arm is added.

Method get_arm_added_time(): get time when an arm is added to the trial

Usage:
Trials$get_arm_added_time(arm)

Arguments:

arm arm name.

Method set_arm_removal_time(): save time when an arm is removed to the trial
Usage:
Trials$set_arm_removal_time(arm, time)
Arguments:

arm name of removed arm.
time time when an arm is removed.

Method get_arm_removal_time(): gettime when an arm is removed from the trial

Trials

Usage:
Trials$get_arm_removal_time(arm)

Arguments:

arm arm name.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Trials$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Instead of using Trial$new, please use trial(), a user-friendly

wrapper. See examples in ?trial.

Bt oo

Method ~Trials$independentIncrement”

Bt e

Not run:

trial$independentIncrement(Surv(pfs, pfs_event) ~ arm, 'pbo’,
listener$get_milestone_names(),

'less', 'oracle')

End(Not run)

Bt oo

Method ~Trials$dunnettTest"

Bt o

Not run:
trial$dunnettTest(Surv(pfs, pfs_event) ~ arm,

'pbo', c('high dose’,

listener$get_milestone_names(), 'default')

End(Not run)

i

Method “Trials$closedTest"

e

Not run:
dt <- trial$dunnettTest(
Surv(pfs, pfs_event) ~ arm,
placebo = 'pbo',
treatments = c('high dose', 'low dose'),
milestones = c('dose selection', 'interim',

"final'),

'low dose'),

67

68 weibullDropout

data.frame(pbo = c(100, 160, 80),
low = c(100, 160, 80),
high = c(100, 160, 80),
row.names = c('dose selection', 'interim', 'final'))

trial$closedTest(dt, treatments = c('high dose', 'low dose'),
milestones = c('interim', 'final'),

alpha = 0.025, alpha_spending = 'asOF')

End(Not run)

weibullDropout Calculate Parameters of Weibull Distribution as a Dropout Method

Description
Fit scale and shape parameters of the Weibull distribution to match dropout rates at two specified
time points.

Usage

weibullDropout(time, dropout_rate)

Arguments

time a numeric vector of two time points at which dropout rates are specified.

dropout_rate anumeric vector of dropout rates at time.

Value

a named vector for scale and shape parameters.

Index

arm, 2
Arms, 3

calendarTime, 5,17, 18
controller, 6
Controllers, 7
CorrelatedPfsAnd0s3, 9
CorrelatedPfsAnd0Os4, 9

default_action, 11
doNothing, 11
DynamicRNGFunction, 12

endpoint, 13
Endpoints, 15
enrollment, 5,17, 18
eventNumber, 5, 17, 18

fitCoxph, 19

fitFarringtonManning, 20

fitLinear, 21
fitLogistic, 22
fitLogrank, 23

getAdaptiveDesignOutput, 24
getFixedDesignOutput, 24

GraphicalTesting, 24
GroupSequentialTest, 32

listener, 37
Listeners, 38

milestone, 39
Milestones, 40

PiecewiseConstantExponentialRNG, 42
plot.milestone_time_summary, 43
plot.three_state_model, 43

rconst, 44

solveMixtureExponentialDistribution,
44

solveThreeStateModel, 46

StaggeredRecruiter, 47

summarizeDataFrame, 48

summarizeMilestoneTime, 49

trial, 50
Trials, 52

weibullDropout, 68

	arm
	Arms
	calendarTime
	controller
	Controllers
	CorrelatedPfsAndOs3
	CorrelatedPfsAndOs4
	default_action
	doNothing
	DynamicRNGFunction
	endpoint
	Endpoints
	enrollment
	eventNumber
	fitCoxph
	fitFarringtonManning
	fitLinear
	fitLogistic
	fitLogrank
	getAdaptiveDesignOutput
	getFixedDesignOutput
	GraphicalTesting
	GroupSequentialTest
	listener
	Listeners
	milestone
	Milestones
	PiecewiseConstantExponentialRNG
	plot.milestone_time_summary
	plot.three_state_model
	rconst
	solveMixtureExponentialDistribution
	solveThreeStateModel
	StaggeredRecruiter
	summarizeDataFrame
	summarizeMilestoneTime
	trial
	Trials
	weibullDropout
	Index

