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Abstract

Financial volatility changes continuously, yet most portfolio optimization strategies rely on

static covariance estimates. This thesis introduces a time-dependent covariance matrix that

updates each time period via kernel-weighted local principal components which is applied

in a time-varying minimum-variance portfolio (TV-MVP). The full workflow is imple-

mented in the open-source R package TVMVP. The package also includes a test for constant

factor loadings, evaluated through Monte Carlo simulations across six data-generating pro-

cesses. Results confirm its statistical reliability: the test accepts constant loadings in over

80% of runs and consistently rejects time-varying structures. Empirically, TV-MVP is ap-

plied to 50-250 Swedish stocks and benchmarked against sample, Ledoit-Wolf, EWMA,

POET, and graphical-lasso covariance estimates. In calm markets (2017-2019), TV-MVP

achieves competitive risk levels and returns. In the volatile 2022-2024 window, it delivers

the lowest or second-lowest standard deviation across all asset pools while preserving com-

petitive Sharpe ratios and drawdowns. TV-MVP therefore offers a practical, low-volatility

alternative with accessible implementation through its accompanying software package.

Keywords: Modern Portfolio Theory, Time-Varying Portfolio Optimization, Minimum

Variance Portfolio, R package
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1 Introduction

Constructing an optimal portfolio is a complex and inherently subjective task. In practice, the

term optimal portfolio is often used to denote the portfolio that maximizes returns for a given

level of risk. In this context, risk is typically decomposed into two components: systematic risk,

which affects the entire market (e.g., changes in interest rates or inflation), and idiosyncratic

risk, which is unique to individual assets, companies, or industries. While systematic risk

cannot be diversified away, idiosyncratic risk can be mitigated by constructing a diversified

portfolio that minimizes inter-asset correlations (Campbell et al., 2001).

There exists a wide array of methods to achieve an optimal trade-off between risk and return.

Modern Portfolio Theory (MPT), or the mean-variance framework introduced by Markowitz

(1952), is one of the most influential approaches to this problem. In the mean-variance setting,

the portfolio optimization problem is formulated as:

max
w

w1µ ´
λ

2
w1Σrw,

s.t. w11p “ 1,

(1)

where w is a p ˆ 1 vector of asset weights, Σr is the covariance matrix of the asset returns,

1p is a p ˆ 1 vector of 1’s, λ is a parameter reflecting the investor’s risk aversion (Palomar,

2025, Sec. 7.1.2). Although the original framework assumes portfolio weights form a convex

combination of assets, the solution may be extended to allow affine combinations when short

selling is permitted.

A key limitation of the classical mean-variance portfolio is its reliance on precise estimates

of µ and Σr. In practice, estimates of expected returns are notoriously noisy, often leading

to suboptimal performance (Chopra and Ziemba, 1993, Michaud, 1989). Furthermore, the

assumption of a static covariance matrix, Σr, is overly restrictive given that the relationships

between assets evolve over time due to shifts in economic conditions, structural breaks, and

regime changes (e.g. Engle and Sheppard, 2001 Bollerslev et al., 1988 & Pelletier, 2006).

An approach that dynamically captures these shifts would allow for more accurate volatility

estimation and, consequently, better portfolio construction.

This thesis aims to develop a method for estimating a time-dependent covariance matrix, Σr,t, to

construct optimal portfolios under evolving market conditions. In the literature, several meth-
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ods have been proposed to incorporate the time dimension in volatility and covariance estima-

tion. Examples include multivariate GARCH models that capture the time varying volatility

and covariance structures between multiple assets simultainiously (Bollerslev et al., 1988, NG,

1991), the Dynamic Conditional Correlation (DCC) models introduced by Engle (2002) which

extends GARCH to capture dynamic correlations, and Exponentially Weighted Moving Aver-

age (EWMA) models that downweight older observations (Longerstaey and Spencer, 1996).

We aim to contribute to this field by developing a new method of time-dependent covariance

estimation.

In this thesis, a time-varying factor model as proposed by Su and Wang (2017) will be im-

plemented to estimate Σr,t. This approach is closely related to the methods described in Q.

Fan et al. (2024) and Wang et al. (2021), both of which utilize time-varying factor models to

estimate covariance matrices for constructing Minimum Variance Portfolios (MVP). Although

their results are promising both in simulation studies and when applied to the empirical data,

the practical implementation of these models is challenging, which limits their widespread use

by practitioners. To address this, an R package has been developed that simplifies the imple-

mentation of Time-Varying Minimum Variance Portfolios (TV-MVP).

Given that the primary focus of this thesis is in the estimation of the covariance matrix, perfor-

mance evaluation will be based on the Minimum Variance Portfolio (MVP), a variation of the

mean-variance model that disregards expected asset returns and focuses solely on minimizing

volatility. The MVP problem is formulated as:

min
w

w1Σrw,

s.t. w11p “ 1,

(2)

with the analytical solution:

w˚
“

Σ´1
r 1p

11
pΣ

´1
r 1p

, (3)

given that there are no shorting restrictions (Palomar, 2025, Sec. 6.5.1).

The overarching question addressed in this thesis is: Is the performance of a Time Varying Min-

imum Variance Portfolio (TV-MVP) competitive with other popular portfolio selection meth-

ods? Moreover, can TV-MVP be implemented in an R package in a manner that is accessible

and practical for the average investor?
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The methodology, implementation, and how to use the package in practice are described in the

following section. The simulation design is presented in the section Monte Carlo Simulation,

followed by the setup for the Empirical Evaluation, and lastly, the Results and Discussion, and

the Concluding Remarks.

2 Methodology and Implementation

In this section, the necessary equations and computations will be described in depth. The

methods described in this section are implemented in the R package TVMVP 1 which can be

installed using:

devtools :: install_github("erilill/TV-MVP", ref = "beta"),

given that the package devtools or remotes is installed.

And then be attached by running:

library(TVMVP)

Before using the package, it is recommended to read the vignette TVMVP-package, which gives

a brief presentation of how the package is intended to be used. This can be accessed by run-

ning vignette("TVMVP_overview", package = "TVMVP"). The source code can be found in our

GitHub repository (Lillrank and Yang, 2025). The package was written, and the analysis con-

ducted, using R 4.4.2 (R Core Team, 2021).

Important to note is that the functions that offer out-of-the-box portfolio optimization,

predict_portfolio, and rolling_time_varying_mvp, require log excess returns, rt; the remain-

ing functions can be used interchangeably with simple excess returns.

This section will discuss the Time Varying Factor model, a method for Determining the Number

of Factors, Testing for Time-Invariance in Factor Loadings, Time-Dependent Covariance esti-

mation, and how we construct a portfolio optimization strategy for Out-of-Sample Prediction.

1The version of the package discussed in this thesis is the beta version. A complete version will be submitted

to CRAN, the final version is a joint effort between me and my supervisor, Yukai Yang.
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2.1 Time Varying Factor Model

The time-varying factor model introduced by Su and Wang (2017) is used to estimate the time-

varying factor loadings λit and the factors Ft. We assume that the p-dimensional time series

of the asset returns with T observations trit, i “ 1, 2, ..., p; t “ 1, 2, ..., T u follows the time-

varying factor model with m latent factors Ft “ pF1t, ..., Fmtq
1:

rit “ λ1
itFt ` eit, (4)

where eit is the idosyncratic error. To estimate the time-varying factor loadings and common

factors, Su and Wang (2017) propose a local weighted least squares method:

min
tλixu

p
i“1,tFtuTt“1

ppT q
´1

p
ÿ

i“1

T
ÿ

t“1

prit ´ λ1
ixFtq

2Kh

ˆ

t ´ x

T

˙

, (5)

where we assume λi : r0, 1s Ñ R is a smooth function such that

λit “ λi

ˆ

t

T

˙

« λi

´ x

T

¯

“ λix when
t

T
«

x

T
. (6)

Kh “ h´1Kp¨{hq, K : R Ñ R` is a kernel function and h “ hpT, pq is a bandwidth

parameter. The minimization problem in equation 5 can be rewritten as:

min
F pxq,Λpxq

tr
”

`

rpxq
´ F pxqΛx

˘ `

rpxq
´ F pxqΛx

˘1
ı

, (7)

where rpxq “ pr
pxq

1 , ..., r
pxq
p q, rpxq

i “ pk
1{2
h,1xri1, ..., k

1{2
h,TxriT q1, F pxq “ pk

1{2
h,1xF

0
1 , ..., k

1{2
h,TxF

0
T q1, and

Λx is the factor loadings at time x. Here kh,tx refers to kh,tx “ h´1Kppt´ xq{pThqq. Under the

identification restrictions F pxq1

F pxq{T “ Im and Λ1
xΛx is a diagonal matrix, we can concentrate

out Λx “ rpxq1

F pxqpF pxq1

F pxqq´1 “ rpxq1

F pxq{T , and rewrite equation 7 as:

tr
”

rpxq1

rpxq
ı

´ T´1tr
”

F pxq1

rpxqrpxq1

F pxq
ı

. (8)

This is the conventional PCA problem: maximizing tr
“

F pxq1

rpxqrpxq1

F pxq
‰

with the restriction

F pxq1

F pxq{T “ Im. As stated by Su and Wang (2017), F̂ pxq is
?
T times the eigenvectors of the

m largest eigenvalues of rpxqrpxq1 , and Λ̂x “ pF pxqF pxq1

q´1F pxq1

rpxq “ F pxq1

rpxq{T .

F̂
pxq

t is a consistent estimator of the weighted factor F pxq “ kh,txFt, following Su and Wang

(2017) we use a two stage estimation to find a consistent estimator of Ft. In the first step above,
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we find consistent estimators for Λt, Λ̂x, which we use to compute the consistent estimator for

Ft:

F̂t “

´

Λ̂1
tΛ̂t

¯´1

Λ̂1
trt. (9)

Before moving on, we need to define the boundary kernel k˚h,tx:

k˚
h,tx “ h´1K˚

x

ˆ

t ´ x

Th

˙

“

$

’

’

’

’

’

&

’

’

’

’

’

%

h´1K
`

t´x
Th

˘

{
ş8

´px{Thq
Kpuq du, if x P r0, tThus

h´1K
`

t´x
Th

˘

, if x P rtThu, T ´ tThus

h´1K
`

t´x
Th

˘ şp1´x{T q{h

´8
Kpuq du, if x P pT ´ tThu, T s.

(10)

The boundary correction is applied as proposed by Su and Wang (2017), and is necessary

in order not to lose efficiency near t “ 1 or t “ T when weighting the data. The kernel

function used in the analysis is the Epanechnikov kernel Kpuq “ 0.75p1 ´ u2q1t|u| ď 1u

where 1t¨u is the indicator function, the bandwidth used is Silverman’s rule of thumb: ph “

2.35{
?
12qT´1{5p´1{10. The functions for Epanechnikov kernel and Silverman’s rule of thumb

are implemented in the package, however, the package also allows the user to specify their own

kernel and bandwidth functions to be used in the local PCA. The choice of bandwidth is due to

ease of use, however, other alternatives, such as a cross-validation approach as described by Su

and Wang (2017) and Q. Fan et al. (2024) could also be used.

These are the necessary steps for estimating the time-varying factor loadings and common

factors. The practical implementation of the procedure is described in algorithm 1.

2.2 Determining the Number of Factors

A BIC-type information criterion will be used to determine the number of factors, m. What

this aims to estimate is m0, the true number of factors, which is assumed to be bounded by an

above finite integer mmax. m̂0 is estimated in the following manner:

m̂0 “ argmin
m

ICpmq

where ICpmq “ log V pm, tΛ̆xpmquq `
p ` Th

pTh
log

ˆ

pTh

p ` Th

˙

m,

and V pm, tΛ̆tpmquq “ min
F̆“pF̆1,...,F̆T q1

1

pT

p
ÿ

i“1

T
ÿ

x“1

”

rit ´ F̆ 1
t λ̆itpmq

ı2

.

(11)
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Algorithm 1 Local PCA
Require: A returns matrix r P RTˆp, kernel parameter x, bandwidth h, number of factors m, kernel function

Kp¨q.

Ensure: A factors matrix F P RTˆm, a list of loadings tΛtu
T
t“1, and a list of kernel weights twtu

T
t“1.

1: Initialize F Ð empty T ˆ m matrix.

2: Initialize loadings list tΛtu
T
t“1 Ð empty.

3: Initialize weights list twtu
T
t“1 Ð empty.

4: Set previous factors Fprev Ð NULL.

5: for t “ 1 to T do

6: // Compute kernel weights for each time point

7: For x “ 1, . . . , T , compute k˚
h,txpxq

8: Compute weighted returns: rpxq “ pk
1{2
h,xr1, . . . , k

1{2
h,xrT q1.

9: // Eigen decomposition to obtain local factors

10: Compute the eigen decomposition: rpxqrpxq
1

“ VDV1.

11: Order the eigenvalues in descending order and select the first m eigenvectors, and compute the factors:

F̂ pxq “ rv1, . . . ,vms ¨
?
T

12: if Fprev ‰NULL then 2

13: for j “ 1 to m do

14: if corpFprev
j , F̂

pxq

j q ă 0 then

15: Flip the sign of the jth column: F̂pxq

j Ð ´F̂
pxq

j .

16: end if

17: end for

18: end if

19: // Compute loadings and factor for time t

20: Λ̂t “ T´1F̂pxq
1

rpxq

21: F̂t “

´

Λ̂1
tΛ̂t

¯´1

Λ̂1
trt

22: Set Frt, :s Ð F̂1
t.

23: Store Λ̂t in the loadings list.

24: Store the weights vector wt “ pkhp1q, . . . , khpT qq1.

25: Update Fprev Ð F̂pxq.

26: end for

27: return tF, tF̂pxquTt“1, tΛtu
T
t“1,m, twtu

T
t“1u.

Here, Λ̆m
t “ ppT q´1rpxq1

rpxqΛ̂m
t , and it follows from equation 9 that F̆m

t “ pΛ̆m1

t Λ̆m
t qΛ̆m1

t rt.

The asymptotic rank of Λ̆m
t is given by minpm,m0q, compared to Λ̂m

t , which is always a full

rank matrix. This lends itself to be useful here as Λ̆m
t is informative on m0 when m ą m0.

More information on this can be found in Lemma A.8 in Su and Wang (2017). Given some

2Sign consistency ensures interpretability over time and maintains consistent rotations.

6



assumptions stated by Su and Wang (2017) it is shown that P pm̂0 “ m0q Ñ 1 as pp, T q Ñ 8.

The pseudo-code for this is given in algorithm 2. Using the package, this can easily be imple-

mented: determine_factors(returns, max_m, bandwidth) which outputs optimal_m and IC_

values. In practice, we have found that setting max_m=10 is often sufficient.

2.3 Testing for Time-Invariance in Factor Loadings

Before employing the out-of-sample prediction for investment purposes, it is useful to first

investigate the time-varyingness of the covariance structure in the data. The hypothesis test

proposed by Su and Wang (2017) is therefore included in the package. The hypotheses are:

H0 : λit “ λi0 for i “ 1, 2, ..., p and t “ 1, 2, ..., T

H1 : λit ‰ λi0 for some i, t,
(12)

Algorithm 2 Determine the Optimal Number of Factors
Require: Data matrix r P RTˆp, maximum number of factors mmax, bandwidth h

Ensure: Optimal number of factors m̂0 and the information criterion values tICpmqu
mmax
m“1

1: Initialize vectors: V Ð 0 P Rmmax , penalty Ð 0 P Rmax , and ICvalues Ð 0 P Rmax .

2: for m “ 1 to mmax do

3: Initialize residuals matrix e P RTˆp (e.g., with NA or zeros).

4: Set F prev Ð NULL.

5: for t “ 1 to T do

6: Perform local PCA with m factors at time t. Lines 6-33 in algorithm 1.

7: Normalize factor loadings: λ̃m
it “

?
p

λ̂m
it

||λ̂m
it ||

s.t. 1
p Λ̂

m1

t Λ̂m
t “ Im

8: Compute estimate of factor loadings by Λ̆m
t “ ppT q´1rpxq

1

rpxqΛ̃m
t

9: Compute factor estimates by F̆m
t “ pΛ̆m1

t Λ̆m
t qΛ̆m1

t rt

10: Compute the residuals: et Ð rt ´ F̆m1

t Λ̆m
t

11: Update F prev Ð F̂ pxq.

12: end for

13: Compute the average sum of squared residuals: Vm Ð ppT q´1e1e

14: Compute the penalty term: penaltym Ð m ¨
`

N`T ¨h
N ¨T ¨h

˘

¨ log
´

N ¨T ¨h
N`T ¨h

¯

.

15: Form the information criterion: ICm Ð ln
`

Vm

˘

` penaltym.

16: end for

17: Determine the optimal number of factors: m̂0 Ð argminm ICpmq.

18: Return pm̂0, ICq.
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i.e, we test whether the factor loadings are constant over time. Here, λ̂it are estimated using

algorithm 1, and λ̂i0 is estimated using regular PCA. This test statistic, JpT , is shown by Su

and Wang (2017) to be asymptotically standard normal under the null, if certain assumptions

hold (see Theorems 4.1 and 4.2 in Su and Wang, 2017). In the finite sample setting, there is

a risk that ĴpT does not converge in distribution, yielding a statistic that does not follow the

standard normal distribution under the null. To ensure the performance of the test in finite

sample settings, a bootstrap version is included in the package.

The test statistic is given by

ĴpT “ V̂´1{2
pT

´

Tp1{2h1{2M̂ ´ B̂pT

¯

, (13)

which is a scaled and centered version of M̂ :

M̂ “
1

pT

p
ÿ

i“1

T
ÿ

t“1

´

λ̂1
itF̂t ´ λ̃1

i0F̃t

¯

, (14)

And the asymptotic variance and bias are given by

V̂pT “
2

phT 2

ÿ

1ďs‰rďT

k̄2
sr

´

F̂ 1
sΣ̂F F̂r

¯2

pê1
rêsq

2
, and

B̂pT “
h1{2

T 2p1{2

p
ÿ

i“1

T
ÿ

t“1

T
ÿ

s“1

´

kh,stF̂
1
sF̂t ´ F̃ 1

sF̃t

¯2

ê2is

(15)

respectively.

This, and the construction of the wild bootstrap, is summarized in algorithm 3. When im-

plementing the function in practice you run hyptest1(returns, m, B, kernel_func) which

outputs JpT , p´value, and bootstrap statistics J bootstrap
pT .

2.4 Time-Dependent Covariance Matrix Estimation

Stock market data is inherently high-dimensional, with large p relative to the sample size T.

With this comes the problem of estimating the covariance matrix; the sample covariance often

performs poorly when p is large in finite samples (Ledoit and Wolf, 2004). A common ap-

proach to this problem is to assume a sparse covariance matrix, i.e., assume that the covariance

is zero, or close to zero, for many of the assets. As such, many regularization techniques have

been introduced to impose such scarcity in the covariance matrix, such as graphical LASSO,
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Algorithm 3 Hypothesis Test for Time-Varying Factor Loadnings
Require: Data matrix r P RTˆp, number of factors m, bootstrap iterations B (default: 200), kernel function K

(default: epanechnikov_kernel)

Ensure: Test statistic ĴpT , bootstrap p-value, and bootstrap statistics tJ
˚pbq

pT uBb“1

1: Standardize Data:

2: r Ð scaleprq

3: T Ð number of rows of r, p Ð number of columns of r

4: h Ð silvermanprq

5: Local PCA:

6: pF̂, Λ̂q Ð local PCApr, h,mq

7: Global Factor Analysis:

8: Compute truncated SVD: r « Um Dm VJ
m

9: F̃ Ð
?
T Um

10: Λ̃ Ð

´

T´1 F̃ 1r
¯1

11: Compute residuals and Error Scale:

12: ê Ð
řT

t“1prt ´ F̂ 1
t Λ̂tq

13: Σ̃ Ð σ̃0
ijp1 ´ ϵq|i´j| for all i, j “ 1, .., p Ź Let σ̃0

ij be the (i,j)th element of Σ̃0 “ T´1
řT

t“1 ẽtẽ
1
t

14: Compute Test Statistic:

15: M̂ Ð 1
pT

řp
i“1

řT
t“1

´

λ̂1
itF̂t ´ λ̃1

i0F̃t

¯

16: B̂pT Ð h1{2

T 2p1{2

řp
i“1

řT
t“1

řT
s“1

´

kh,stF̂
1
sF̂t ´ F̃ 1

sF̃t

¯2

ê2is

17: V̂pT Ð 2
phT 2

ř

1ďs‰rďT k̄2sr

´

F̂ 1
sΣ̂F F̂r

¯2

pê1
r êsq

2

18: ĴpT Ð
T

?
p

?
h M̂ ´ B̂pT
b

V̂pT

19: Bootstrap Procedure:

20: Initialize Jbootstrap
pT ÐNULL

21: for b “ 1 to B do

22: Generate ζ P RTˆp with i.i.d. Np0, 1q entries

23: Compute bootstrap errors: e˚ Ð Σ̃1{2ζ

24: Generate bootstrap sample: r˚ Ð F̃ Λ̃1 ` e˚

25: Repeat steps on lines 5-18 for R˚

26: Append J˚
pT to Jbootstrap

pT

27: end for

28: Compute Bootstrap p-value:

29: pvalue Ð 1
B

řB
b“1 1tJ

˚pbq

pT ě JpT u

30: return tJpT , p_value, Jbootstrap
pT u

shrinkage, and thresholding methods (e.g. Bickel and Levina, 2008; Friedman et al., 2007b;

Ledoit and Wolf, 2003). Wang et al. (2021) argue that the sparsity assumption is often too
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restrictive in finance and economics settings, as the variables are often highly correlated. As

such, regularizing the covariance matrix too heavily could yield inaccurate results. In the case

of this thesis and package, it could yield inaccurate weights, which would produce portfolios

with uncertain performance. Financial data is also inherently dynamic, with covariance struc-

tures changing over time due to extreme events such as pandemics and war, as well as changes

in production and gradual market shifts. To address these problems, both Wang et al. (2021)

and Q. Fan et al. (2024) propose a covariance estimator constructed using time-varying factors

and factor loadings, with some slight differences. In our package we use a similar method

where we kernel smooth the data using the boundary kernel specified in Eq. 12 around x “ T

when performing the out-of-sample prediction, i.e. we will use F̂ and Λ̂t in the construction of

the covariance matrix Σ̂r,t. Our method distinguishes itself in that we use a different method

for calculating ΣF compared the Wang et al. (2021), and a different method for regularizing Σe

compared to Q. Fan et al. (2024).

We start by constructing a naive estimate of the residual covariance. Let êt “ Rt ´ F̂ 1
t Λ̂t, the

sample covariance matrix is then:

Σ̂e “
1

T
ê1ê. (16)

To solve the problem of ill-behaved sample covariance matrices, we apply a general shrinkage

to the residual covariance matrix (see Z. Chen and Leng, 2016; Wang et al., 2021).

Σ̃pxq
e “ rσ̃

pxq

e,ijspˆp, σ̃
pxq

e,ij “

$

’

&

’

%

σ̂
pxq

e,ij, if i “ j

Sρpxqpσ̂
pxq

e,ijq if i ‰ j

(17)

Where sρpzq is a shrinkage function which satisfies the following three conditions for all z P R:

(i) |sρpzq| ď |z|; (ii) srho “ 0 for z ď ρ; (iii) |sρpzq ´ z| ď ρ (Z. Chen and Leng, 2016). In this

thesis the focus will be on soft thresholding: sρ “ signpzqp|z|´ρq`, however hard thresholding,

adaptive lasso, and smoothly clipped absolute deviation (SCAD) could easily be implemented

in the package and would be a good addition to the current functionality.

After estimating the residual covariance, we can compute the covariance matrix of the returns:

Σ̃r,t “ Λt
pΣFΛ

1
t ` Σ̃e, (18)

which is dependent on time by the time-dependent factor loadings. Here, pΣF is simply:

1

T
F 1F. (19)
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2.4.1 Choice of tuning parameter ρ

Following Wang et al. (2021) and J. Chen et al. (2019), we implement a three-step procedure

that allows the tuning variable to vary with x.

(i) Let t¨u denote the floor function, for a given x, divide the sample into m “ 1, . . . , tT {2M0u

groups, split the data in each group into two sub-samples, T1 “ tT
2

p1 ´ 1{logpT {2qqu and

T2 “ tT {2u ´ T1, leaving M0 observations out in between the two sub-samples. (ii) Compute

the shrunk residual covariance matrix of the first sub-sample Σ̃e,1,m, and the sample covariance

matrix of the second sub-sample Σ̂e,2,m. (iii) Choose tuning parameter ρ which minimizes the

sum of the squared Frobenius norm:

tT {2M0u
ÿ

m“1

||Σ̃e,1,m ´ Σ̂e,2,m||
2
F (20)

for ρ P rρ1, ρ2s, where ρ1 “ ϵ ` inftρ˚ ą 0|λminpΣ̃e,1,m ą 0, @ρ ą ρ˚u. Here, ϵ is a small

positive constant, and ρ2, the upper bound of ρ, should be a sufficiently large positive constant.

The Frobenius is used as the criterion as it balances bias (over-shrinking) and variance (under-

shrinking). The reason for excluding M0 observations between the two sub-samples is to ensure

that the correlation between the two is negligible. Both J. Chen et al. (2019) and Wang et al.

(2021) use M0 “ 10, and we follow this lead.

The full process of computing the covariance matrix and the optimal tuning parameter can be

seen in algorithms 4 and 5, respectively. These functions are internal, and a wrapper has been

written that incorporates the local PCA procedure and the covariance estimator:

cov_mat <- time_varying_cov(returns ,

m,

bandwidth = silverman(returns),

kernel_func = epanechnikov_kernel ,

M0 = 10,

rho_grid = seq (0.005 , 2,

length.out = 30),

floor_value = 1e-12,

epsilon2 = 1e-6,

full_output = FALSE)
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Algorithm 4 Estimate Covariance

Require: Local PCA results pΛx, F q, returns r, M0, ρgrid, floor value ϵ

Ensure: Estimated covariance Σ̃r,t and residual covariance Σ̃e

1: Extract factor loadings Λt and factors F

2: Compute residuals et “ r ´ F 1Λt

3: Compute best shrinkage parameter ρ˚ using ADAPTIVERHO on e Ź Algorithm 5

4: Compute raw residual covariance: Σ̂e “ 1
T
ê1ê

5: Compute shrinkage threshold: τ “ ρ˚ ¨ meanp|Σ̂e|off-diagonalq

6: Apply soft-thresholding to off-diagonal elements of Σ̂e:

Σ̃e “ rσ̃e,ijspˆp, σ̃e,ij “ signpσ̂e,ij maxp|σ̂e,ij| ´ τ, 0q, i ‰ j

7: Compute total covariance estimate: Σ̃r,t “ Λt
pΣFΛ

1
t ` Σ̃e

8: Perform eigenvalue flooring to ensure positive semidefiniteness:

Compute eigen-decomposition: Σ̃r,t “ QΛQ1

Floor eigenvalues: λi “ maxpλi, ϵq

Reconstruct PSD covariance: Σ̃r,t “ QΛQ1

9: Return Σ̃r,t

This function will compute the covariance matrix for the last time period in returns. The

default output is the covariance matrix, but if more detailed output is needed, the user can run

the function with full_output=TRUE.

2.5 Out-of-Sample Prediction

The out-of-sample prediction uses many of the previously described methods. In this section,

the functions of the package that are used for prediction and how they have been constructed

will be presented. Note that log returns are used throughout the analysis and are the expected

input for the functions included in the package.
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Algorithm 5 Adaptive Shrinkage Tuning Parameter Selection
Require: Residual matrix e, tuning parameter M0, candidate shrinkage values ρgrid, a small

positive constant ϵ

Ensure: Optimal shrinkage parameter ρ˚

1: Partition data into overlapping sub-groups of size tT {p2M0qu

2: for each ρ P ρgrid do

3: Divide into sub-samples T1 “ tT
2

p1 ´ 1{logpT {2qqu and T2 “ tT {2u ´ T1

4: Apply soft-thresholding to the first sub-sample’s covariance T1

5: Compute Σ̃e,1,m and Σ̂e,2,m

6: Compute Frobenius norm difference:
řtT {2M0u

m“1 ||Σ̃e,1,m ´ Σ̂e,2,m||2F

7: end for

8: Compute ρ1 “ ϵ ` inftρ˚ ą 0|λminpΣ̃e,1,m ą 0, @ρ ą ρ˚u

9: Select ρ˚ P rρ1, ρ2s that minimizes Frobenius norm difference

10: Return ρ˚

2.5.1 Portfolio Optimization and Prediction

The metrics of interest are risk, expected excess returns (ER), and the Sharpe ratio (SR):

Riskt “ w1
tΣr,twt “

1

11
pΣ

´1
r,t 1p

, EERt “ w1
tpµt ´ rf q, SR “

11
pΣ

´1
r,t pµt ´ rf q

b

11
pΣ

´1
r,t 1p

, (21)

where Rf refers to the risk-free rate.

Out-of-sample forecasting aims to predict excess returns rt`j, j “ 1, . . . , J , where J is the

forecasting horizon. As we only have information up until t “ T , we estimate rt`j as:

rt`j “ zEERt, t “ T, (22)

and the cumulative excess returns:

zCERJ “ J ˆ zEERt, t “ T. (23)

Similarly, for the cumulative risk:

yCRJ “
?
J ˆ zRiskt, t “ T. (24)

The covariance matrix is computed as in algorithm 4, which is used to compute the weights

as in eq. 3. The package also offers the user to set a minimum returns constraint, i.e., eq. 3
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Algorithm 6 Predict Portfolio
Require: A returns matrix r P RTˆp, forecast horizon, maximum number of factors, kernel function Kp¨q,

minimum returns constrataint (optional), maximum Sharpe ratio portfolio (TRUE or FALSE), risk free rate

rf .

Ensure: Portfolio weights w˚, forecast estimates of cumulative excess log returns CER, cumulative risk CR,

and Sharpe ratio SR.

1: Select bandwidth using Silverman’s rule

2: Determine optimal number of factors via DETERMINE_FACTORS

3: Perform Local PCA Ź see Algorithm 1

4: Compute covariance matrix: Ź Algorithm 4

5: Compute expected excess returns: µ̂ Ð column means of returns ´rf Ź See footnote 3

6: Global Minimum Variance Portfolio (GMV):

7: w˚GMV
T “

Σ̃´1
r,T 1p

11
pΣ̃

´1
r,T 1p

Ź Normalize

8: Compute GMV performance:

9: {CER
GMV

J “ J ˆ w˚GMV
T µ̂

10: yCR
GMV

J “

b

w˚GMV
T Σ̃r,Tw

˚GMV
T ˆ

?
J

11: xSR
GMV

“
{CER

GMV

J
?
JˆyCR

GMV

J

12: if max_SR “ TRUE then

13: Maximum SR Portfolio:

14: w˚sr
T 9Σ̃´1

r,T µ̂ Ź Normalize

15: Compute Maximum SR performance Ź See lines 9-11

16: end if

17: if min_return ‰ null then

18: Minimum Variance Portfolio with Return Constraint

19: A Ð r1, µ̂spˆ2 Ź Constraint matrix

20: b Ð r1,min_return{Js2ˆ1 Ź Constraint values

21: w˚constr.
T “ Σ̃´1

r,TApA1Σ̃´1
r,TAq´1b Ź Normalize

22: Compute Constrained Portfolio performance Ź See lines 9-11

23: end if

24: return { Minimum Variance Portfolio: pw˚GMV
T , CERGMV , CRGMV , SRGMV q,

25: Maximum SR Portfolio: pw˚sr
T , CERsr, CRsr, SRsrq [if computed],

26: Return-Constrained Portfolio: pw˚constr.
T , CERconstr., CRconstr., SRconstr.q [if computed] }

is subject to both w11p “ 1 and w1pµ ´ rf q ě rmin{J , as well as the option to compute the

maximum SR portfolio. The full process can be seen in algorithm 6.

3In the package, the expected returns are computed by ARIMA prediction. The ARIMA specification is defined

using a simple grid search to find the model with the lowest AIC out of ARIMA(0,0,0), (1,0,0), (0,0,1), and (1,0,1).

14



While the main focus of this thesis lies in the estimation of time-varying covariance matrices

and their application in portfolio optimization, portfolio construction also requires estimates

of expected returns. To this end, we employ a simple univariate ARIMA-based forecasting

approach. This is used to forecast the expected portfolio returns and in the optimization of the

maximum SR portfolio and the MVP with minimum returns constraint.

ARIMA serves as a pragmatic choice as a general-purpose forecasting method. The use of

more sophisticated methods of estimating the expected returns and rigorous evaluation of the

maximum SR portfolio and the MVP with minimum returns constraint is left for future re-

search.

An example of how to run the function from the package can be seen below:

optimal_portfolio <- predict_portfolio(returns = returns ,

horizon = 5,

max_factors = 5,

min_return = 0.015,

max_SR = TRUE)

2.5.2 Rolling Window Evaluation

The rolling window function rolling_time_varying_mvp is simply an extension of

predict_portfolio used to evaluate the performance. For this function, the user states the

initial window to use for estimation of the covariance. The function then computes the weights,

which are applied for the duration of the rebalancing period, rebalance, and start over. Using

this rolling window allows us to investigate the performance of the method over time.

The evaluation metrics implemented in the function are cumulative log excess returns, standard

deviation, and Sharpe ratio. The cumulative log excess returns are calculated as:

CER “

KˆJ
ÿ

t“1

per˚
t q. (25)

Where K denotes the number of windows, J denotes the length of the rebalancing period, and
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er˚ denotes the weighted excess returns. The risk is simply the standard deviation:

SD “
1

K ˆ J ´ 1

KˆJ
ÿ

t“1

per˚
t ´ ēr˚

q, (26)

and the Sharpe ratio is SR “ ēr˚{SD. These three metrics will give a good representation of

how well the method works for the given data.

The complete sequence can be seen in algorithm 7. To use the function, simply run:

rolling_time_varying_mvp(returns, initial_window, rebal_period, max_factors, return

_type = "daily"). For brevity, it is not shown in the algorithm, but the function also outputs

the same metrics for an equal weights portfolio as a benchmark to evaluate the performance

against.

Algorithm 7 Rolling Window Time-Varying Minimum Variance Portfolio (MVP)
Require: A returns matrix r P RTˆp, length of initial window used for estimation, maximum number of factors,

return type (daily, weekly, monthly), kernel function Kp¨q, risk free rate rf (scalar or vector of length T ´

initial window).

Ensure: Cumulative excess log returns (CER), mean excess log returns (MER), standard deviation, Sharpe ratio,

and annualized versions of the metrics.

1: rebalance_dates Ð tinitial_window ` 1, initial_window ` 1 ` rebal_period, . . . , T u

2: RT Ð |rebalance_dates|

3: Determine number of factors based on initial window Ź Algorithm 2

4: for j “ 1 to RT do

5: reb_t Ð rebalance_dates[j]

6: est_data Ð returns[1:(reb_t ´ 1)]

7: Predict length of rebalancing period ahead, m determined outside loop Ź Algorithm 6

8: Save w˚
T˚ into weights list

9: hold_end Ð minpreb_t ` rebal_period ´ 1, T q

10: r˚
j Ð {for t “ reb_t to hold_end, compute w_hat1rt}

11: end for

12: er = r˚
j ´ rf

13: CER Ð
řK

k“1

řJ
j“1 w

˚
kerj , for K “ RT , J “ rebal_period

14: Compute performance metrics: mean, standard deviation, Sharpe ratio

15: Annualize standard deviation and Sharpe ratio

16: return list of computed metrics and portfolio weights

17:
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3 Monte Carlo Simulation

To test that the hypothesis test works as intended, a simulation study will be conducted. The

performance of the hypothesis test has been well documented by Su and Wang (2017) and Q.

Fan et al. (2024); because of this, only a smaller-scale simulation study will be conducted to

make sure that the hypothesis test is correctly implemented in the package.

To evaluate the performance of the hypothesis test, the simulation will be run with 500 repli-

cations, T=200, p=100, m=2, and 200 bootstrap draws when conducting the test. As the size

of the test statistic is less reliable in the finite sample, the main result presented will be the

rejection rate at 1, 5, and 10% significance, based on the bootstrap p-value.

Six data-generating processes (DGP) have been chosen to evaluate the performance of the

package in varied settings of time-invariant and time-varying covariance. The DGP’s used are

mimicking the simulation design used by Su and Wang (2017).

3.1 Data Generating Processes

A subset of the DGPs designed by Su and Wang (2017) is used, namely the first six DGPs

included in their simulation study. The choice to use this simulation design was made to ensure

comparability with the results found by Su and Wang (2017).

DGP 1 (IID):

λit „ Np0, I2q and eit „ Np0, 1q.

DGP 2 (Heteroskedastic):

λit „ Np0, I2q and eit “ σiνit, where σi „ Np0, 1q and νit „ Up0.5, 1.5q.

DGP 3 (Cross-Sectional Dependence)

λit „ Np0, I2q and et „ Np0,Σeq, where Σ “ pcqij, cij “ 0.5|i´j|.

DGP 4 (Structural Break):

λit “

$

’

&

’

%

λi0,k, for 1, . . . , T {2

λi0,k ` b, for T {2 ` 1, . . . , T

,
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λi0,k „ Np1, 1q for k=1,2, eit “ σiνit, where σi „ Np0, 1q and νit „ Up0.5, 1.5q.

DGP 5 (Multiple Structural Breaks):

λit,1 “

$

’

&

’

%

λi0,1 ` 1 for 0.6T ă t ď 0.8T

λi0,1 ´ 0.5b for 0.2T ă t ď 0.4T

Where λi0,1 „ Np1, 1q, λit,2 “ λi0,2 „ Np0, 1q and eit „ Np0, 1q.

DGP 6 (Smooth Structural Changes):

λit,1 “ λi0,1 „ Np0, 1q, λit,2 “ b ˆ Gp10t{T, 2, 5i{p ` 2q, where Gpz : κ, γq “
␣

1 `

exp r´κ
śp

l“1pz ´ γlqs
(´1, and ei „ Np0, 1q.

The scenarios that will be tested are both time-invariant (DGP 1-3) and time-varying (DGP

4-6). The degree of time varyingness that will be tested is b “ 2. Su and Wang (2017) also

includes b “ 1, however this is omitted due to time constraints.

With DGP 1-3, the aim is to test whether the hypothesis test correctly identifies time-invariant

time series with different structures. DGP 4-6 models time series with different time vary-

ing structures: A singular structural break, multiple structural breaks, and a smooth structural

break.

The factors are constructed as:
f1t “ 0.6f1,t´1 ` u1

f2t “ 0.3f2,t´1 ` u2

(27)

where u1 and u2 are IID Np0, 1 ´ 0.62q and Np0, 1 ´ 0.32q respectively, which is the same as

in Su and Wang (2017).

The simulated data is then constructed as: rsimt “ Λsim
t F sim

t ` esimt .

4 Empirical Evaluation

The out-of-sample performance of the method will be evaluated using data consisting of stocks

traded on the Swedish stock market during two periods, between 2015-12-31 and 2019-12-

31, and 2020-12-31 and 2024-12-31. The reason is that we want to compare the performance

when applied during a financially stable period, to when it is applied during a less financially
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stable period. After omitting assets that were not traded for the entire period, the first data

set consists of 261 stocks, and the second set consists of 347 stocks. After cleaning the data

of bank holidays, the first set includes 1004 time points, and the second set includes 1008,

i.e., approximately 251-252 trading days per year. The Stockholm Interbank Offered Rate

(STIBOR) is used as a proxy for the risk-free rate in the analysis. This is a benchmark of the

rates of unsecured bonds between banks issued by the Swedish Financial Benchmark facility

(SFBF) (Swedish Financial Benchmark Facility, n.d.). Using STIBOR as a proxy for the risk-

free rate is a common approach when studying the Swedish market (e.g. Dahlquist et al.,

2000; Engström, 2004). The STIBOR data consists of annualized interest rates reported as

tomorrow/next. The data was retrieved from Refinitiv Eikon (2025).

Log returns rt “ logpPtq ´ logpPt´1q, and logged risk free rate rf “ logp1 ` rannf {252q will

be used throughout the analysis. The risk-free rate is rescaled to reflect the daily rate, there are

approximately 252 trading days every year.

To mimic a real-world investment environment, the performance will be evaluated using weekly

and monthly rebalancing. The different scenarios that will be used to evaluate the performance

are 50, 150, and 250 randomly selected stocks traded on the Swedish stock market. The per-

formance is evaluated using a rolling window that uses the first year (2016/2021) as the initial

window (252 time points), and rolls over the next three years (752/756 time points). The num-

ber of factors is updated yearly using determine_factors() with max_m=10. We assume no

transaction cost and that there are no restrictions on shorting. The metrics that will be used to

evaluate the model are cumulative log excess returns (CER), mean log excess returns (MER),

standard deviation (SD), Sharpe ratio (SR), as well as maximum drawdown (MDD), which is

computed as:

MDD “ max
t

tDrawdowntu

where Drawdownt “ 1 ´
Vt

maxτPr0,ts Vτ

.
(28)

Here, Vt denotes the cumulative simple returns at time t. MDD is a metric of how stable the

portfolio returns are over time, indicating whether there have been large negative spikes in

returns during the period. Since it measures the difference between the peak and the largest

through in percentage, we have to convert the log excess returns to simple excess returns to

compute the metric.
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As the weights are optimized to minimize the covariance between the assets in the portfolio, the

most important metric is the standard deviation (risk). However, CER and MDD will also be

important when evaluating the performance, as low-risk portfolios would be expected to have

stable excess returns over time.

The results of TV-MVP will be compared to other popular methods of estimating the covariance

of the returns, namely: Sample covariance, Ledoite-Wolf shrinkage (Schäfer and Strimmer,

2005, Schafer et al., 2021), exponentially weighted moving average (EWMA) (Longerstaey and

Spencer, 1996, Reckziegel, 2025), Principal Orthogonal ComplEment Thresholding (POET)

(J. Fan et al., 2013, J. Fan et al., 2016), and Graphical Lasso (Glasso) (Friedman et al., 2007a,

Friedman et al., 2019). As a baseline, an equally weighted portfolio is also included.

5 Results and Discussion

In this section, the results from the simulation study and the empirical evaluation are presented

and discussed. The complete results can be found in the results folder of the GitHub repository

(Lillrank, 2025). In the same repository, you will also find the necessary scripts for conducting

the simulation study and the empirical analysis.

Table 1: Rejection rates of hypothesis test in Monte Carlo simulation: Proportions of bootstrap

p-values above thresholds for each DGP in hypothesis test of constant loadings (see section

2.3 and Su and Wang (2017)). H0 : λit “ λi0 for i “ 1, 2, . . . , p and t “ 1, 2, . . . , T vs.

H1 : λit ‰ λi0 for some i, t.

Threshold DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

p ă 0.1 0.148 0.112 0.198 1.000 1.000 1.000

p ă 0.05 0.114 0.080 0.154 1.000 1.000 1.000

p ă 0.01 0.066 0.056 0.096 1.000 1.000 1.000
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5.1 Simulation Results

Table 1 presents the proportions of bootstrap p-values exceeding various thresholds for each

data generating process (DGP) in our test of constant factor loadings, where H0 : λit “ λi0 for

i “ 1, 2, . . . , p and t “ 1, 2, . . . , T vs. H1 : λit ‰ λi0 for some i, t.

DGPs 1-3 feature time-invariant loadings. As shown in the table, the hypothesis test correctly

classifies these cases as time-invariant more than 80% of the time. In contrast, DGPs 4-6 are

generated with time-varying factor loadings. As can be seen from table 1, the hypothesis test

correctly identifies the time-varying DGP’s 100% of the time, for all p-value thresholds. This

suggests that the test reliably distinguishes between time-invariant and time-varying loadings.

These results are in line with those found by Su and Wang (2017). Looking at the results of

their simulation study in Tables 3 and 4 (Su and Wang, 2017), we see that their results show

slightly better accuracy in identifying the time-invariant case, but with very similar results

for identifying the time-varying case. The discrepancies found when comparing the results for

DGP’s 1-3 could be due to some slight differences in the implementation of the data-generating

processes. Except for these small discrepancies, the results found here match the ones found by

Su and Wang (2017), which confirms that the hypothesis test has been correctly implemented

in the package.

5.2 Empirical Results

The results from the empirical analysis can be seen in tables 2 and 3, for 2017-2019 and 2022-

2024, respectively. Within the tables, subtables show the results for weekly and monthly rebal-

ancing separately. The asset pools that have been used to construct the portfolios consist of 50,

150, and 250 stocks, which were randomly chosen out of the 261 (table 2) and 347 (table 3)

stocks in the data set.

In table 2 we see the results from the rolling window during 2017-2019. For both weekly and

monthly rebalancing, we see low, positive returns for the equal weights portfolio and larger pos-

itive returns for the optimized portfolios, except for Glasso, which performs poorly concerning

cumulative log excess returns (CER). Looking at the SD, we see that the shrinkage method of
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estimating the covariance matrix yields the lowest SD for all asset pools, with TV-MVP tied for

lowest SD with p=150, and second lowest SD for p=250. We see quite similar results between

the portfolios in regards to risk, with only slightly lower SD compared to the equal weights

portfolio for all optimized portfolios.

If we instead look at the other metrics of interest, we see that POET has the largest CER and

SR, and the lowest MDD, for all asset pools. This indicates that this portfolio has the steadiest

upward development during the period, which would indicate that this is the portfolio that has

had the best performance. In this aspect, TV-MVP performs slightly worse compared with

Sample, Shrink, EWMA, and POET covariance estimation. These have larger CER and SR,

while having lower MDD for p=50 when using both weekly and monthly rebalancing. For

p=150, we see that TV-MVP has the second lowest MDD in table 2a, while for the monthly

rebalancing in table 2b, it has slightly higher MDD than the other portfolios (except Glasso

and 1/N). We also see that TV-MVP has lower CER and SR for p=150 when compared to

Sample, Shrink, EWMA, and POET, for both weekly and monthly rebalancing. For p=250,

we see that the performance of TV-MVP is more competitive compared to the other portfolios,

with the third highest CER and SR, and the second lowest MDD, for both weekly and monthly

rebalancing.

Looking at the results for 2022-2024 in table 3, for all three asset pools, we see that the equal

weights portfolio produces negative cumulative excess log returns, mean excess log returns,

and Sharpe ratio. This shows that, on average, the assets within the pools have had a negative

development during the period. As such, it should be no surprise that the optimized portfolios

also show negative returns during the period. The MVP is optimized based on minimizing the

inter-asset correlation rather than maximizing returns; hence, in a declining market, we would

not expect these portfolios to perform well concerning excess returns. However, what we do

see is that the negative CER is smaller for the optimized portfolios, indicating that some of the

loss in returns has been avoided due to diversification.

Looking at SD, our metric measuring risk, what we see in the tables 3a and 3b is that for p=50,

the SD is quite similar between the portfolios, with the portfolios using the sample and EWMA

covariance estimation producing the lowest risk at 0.0094. The similarity in results could be

an indication that the variation in the asset pool is small; this would explain why all portfolios

perform similarly to the equal weights portfolio. For p=150 and p=250, we see that TV-MVP
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produces the lowest SD with POET being a close second.

For all portfolios, we see large maximum drawdowns, indicating financial instability within the

asset pools. What we see is that POET and TV-MVP have the lowest MDD out of all portfolios,

however, POET has better performance in this aspect for p “ 50 and 150 for both weekly and

monthly rebalancing, and for p “ 250, the resulting MDD are very similar between the two

portfolios. If we also look at CER, we see in table 3a that POET has positive returns during

the period when using p=50, and the smallest losses when p “ 150, while Sample covariance

has the lowest negative CER with p “ 250, with TV-MVP being a close second. For monthly

rebalancing (table 3b), POET has the lowest loss of returns for p “ 50 and 150, and EWMA

for p “ 250. TV-MVP does not outperform the other methods in terms of portfolio returns and

drawdowns; however, it is consistently among the top three portfolios in this regard, and is the

top performer in terms of SD.

These results are similar to those found by Q. Fan et al. (2024), and Wang et al. (2021), which

have used very similar methods for estimation of a time-varying covariance matrix to optimize

the minimum variance portfolio. Q. Fan et al. (2024) compares TV-MVP to different estab-

lished methods and found TV-MVP to be competitive but not better than established methods

such as POET and DCC. Wang et al. (2021) compared the performance of their time-varying

covariance against POET in their empirical analysis, trying different numbers of factors, and

found that the methods perform similarly. These results are in line with what can be seen here,

where TV-MVP generally has some of the lowest risk, especially in financially turbulent times,

but it is not clearly better than the other methods with which it is being compared.

6 Concluding Remarks

In this thesis, we developed and evaluated a time-varying factor model for estimating the co-

variance matrix in a dynamic setting, with particular emphasis on portfolio optimization. Our

methodology adapts a kernel-weighted principal component approach to capture evolving fac-

tor loadings and uses a shrinkage-based residual covariance estimation to address potential

high-dimensional challenges. We package this in a user-friendly R package to facilitate practi-

cal adoption by researchers and practitioners alike.
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Through simulation experiments, we confirmed that the included hypothesis test for time-

invariance in factor loadings effectively distinguishes between constant and time-varying co-

variance structures. Empirical applications to Swedish Stock data from stable (2017-2019) and

volatile (2022-2024) market conditions showed that the proposed time-varying minimum vari-

ance portfolio (TV-MVP) can achieve comparatively low volatility. While it does not outper-

form established methods (e.g., POET and shrinkage estimators) in terms of portfolio returns

and Sharpe ratio, it remains broadly competitive.

For future research, we leave several opportunities for expansion and improvements of the

method. First, evaluation of the maximum Sharpe ratio portfolio as well as other portfolio op-

timization techniques, as well as more sophisticated modelling of the expected returns, which

could enhance the performance of these portfolios. Second, implementing different regulariza-

tion options for the residual covariance. Finally, expanding the package with more methods of

portfolio optimization and refining the code base for more efficient computation. By providing

a user-friendly implementation of the method and proving its competitiveness against estab-

lished methods, we anticipate that time-varying factor approaches will become increasingly

central to portfolio management.

References

Bickel, P. J., & Levina, E. (2008). Regularized estimation of large covariance matrices. The

Annals of Statistics, 36(1), 199–227. https://doi.org/10.1214/009053607000000758

Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with

time-varying covariances. Journal of Political Economy, 96(1), 116–131.

Campbell, J. Y., Lettau, M., Malkiel, B. G., & Xu, Y. (2001). Have individual stocks become

more volatile? an empirical exploration of idiosyncratic risk. The Journal of Finance,

56(1), 1–43.

Chen, J., Li, D., & Linton, O. (2019). A new semiparametric estimation approach for large

dynamic covariance matrices with multiple conditioning variables [Big Data in Dy-

namic Predictive Econometric Modeling]. Journal of Econometrics, 212(1), 155–176.

https://doi.org/10.1016/j.jeconom.2019.04.025

24



Chen, Z., & Leng, C. (2016). Dynamic covariance models. Journal of the American Statistical

Association, 111(515), 1196–1207. https://doi.org/10.1080/01621459.2015.1077712

Chopra, V. K., & Ziemba, W. T. (1993). The effect of errors in means, variances, and covari-

ances on optimal portfolio choice. The Journal of Portfolio Management, 19(2), 6–11.

https://doi.org/10.3905/jpm.1993.409440

Dahlquist, M., Engström, S., & SÃ¶derlind, P. (2000). Performance and characteristics of

swedish mutual funds. Journal of Financial and Quantitative Analysis, 35(3), 409–423.

https://doi.org/10.2307/2676219

Engle, R. (2002). Dynamic conditional correlation. Journal of Business & Economic Statistics,

20(3), 339–350. https://doi.org/10.1198/073500102288618487

Engle, R., & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional

correlation multivariate garch. Department of Economics, UC San Diego, University of

California at San Diego, Economics Working Paper Series.

Engström, S. (2004). Investment strategies, fund performance and portfolio characteristics

(SSE/EFI Working Paper Series in Economics and Finance No. 554). Stockholm School

of Economics (SSE). https://swopec.hhs.se/hastef/abs/hastef0554.htm

Fan, J., Liao, Y., & Mincheva, M. (2016). Poet: Principal orthogonal complement thresholding

(poet) method [R package version 2.0]. https://CRAN.R-project.org/package=POET

Fan, J., Liao, Y., & Mincheva, M. (2013). Large covariance estimation by thresholding principal

orthogonal complements. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 75(4), 603–680.

Fan, Q., Wu, R., Yang, Y., & Zhong, W. (2024). Time-varying minimum variance portfolio.

Journal of Econometrics, 239(2), 105339. https://doi.org/10.1016/j.jeconom.2022.08.

007

Friedman, J., Hastie, T., & Tibshirani, R. (2019). Glasso: Graphical lasso: Estimation of gaus-

sian graphical models [R package version 1.11]. https://CRAN.R-project.org/package=

glasso

Friedman, J., Hastie, T., & Tibshirani, R. (2007a). Sparse inverse covariance estimation with

the lasso. Biostatistics.

Friedman, J., Hastie, T., & Tibshirani, R. (2007b). Sparse inverse covariance estimation with

the graphical lasso. Biostatistics, 9(3), 432–441.

25



Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns

with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603–

621. https://doi.org/10.1016/S0927-5398(03)00007-0

Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance

matrices. Journal of Multivariate Analysis, 88(2), 365–411. https://doi.org/10.1016/

S0047-259X(03)00096-4

Lillrank, E. (2025). Codeforthesis [GitHub repository. Accessed 13 May 2025]. https://github.

com/erilill/CodeForThesis

Lillrank, E., & Yang, Y. (2025). TVMVP: Time–varying minimum variance portfolio [GitHub

repository. Accessed 22 Apr 2025]. https://github.com/erilill/TV-MVP

Longerstaey, J., & Spencer, M. (1996). Riskmetrics technical document (tech. rep. No. 51) (p.

54). Morgan Guaranty Trust Company of New York. New York.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. https://doi.org/

10.2307/2975974

Michaud, R. O. (1989). The markowitz optimization enigma: Is optimized optimal? Financial

Analysts Journal, 45(1), 31–42. https://doi.org/10.2469/faj.v45.n1.31

NG, L. (1991). Tests of the capm with time-varying covariances: A multivariate garch ap-

proach. The Journal of Finance, 46(4), 1507–1521.

Palomar, D. P. (2025). Portfolio optimization [Bookdown web edition, accessed 9 May 2025].

https://bookdown.org/palomar/portfoliooptimizationbook/

Pelletier, D. (2006). Regime switching for dynamic correlations. Journal of Econometrics,

131(1), 445–473. https://doi.org/10.1016/j.jeconom.2005.01.013

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. Vienna, Austria. https://www.R-project.org/

Reckziegel, B. (2025). Portfoliomoments: Functions to be used in conjuction with portfolioana-

lytics [R package version 0.1.0, commit 8ed0c3290a64c0f09d2ad52baeec4e7af83e972a].

https://github.com/Reckziegel/PortfolioMoments

Refinitiv Eikon. (2025). Refinitiv eikon financial data platform [Accessed: 2025-02-26]. https:

//eikon.refinitiv.com/

Schafer, J., Opgen-Rhein, R., Zuber, V., Ahdesmaki, M., Silva, A. P. D., & Strimmer., K.

(2021). Corpcor: Efficient estimation of covariance and (partial) correlation [R pack-

age version 1.6.10]. https://CRAN.R-project.org/package=corpcor

26



Schäfer, J., & Strimmer, K. (2005). Statistical Applications in Genetics and Molecular Biology,

4(1). https://doi.org/doi:10.2202/1544-6115.1175

Su, L., & Wang, X. (2017). On time-varying factor models: Estimation and testing. Journal of

Econometrics, 198(1), 84–101.

Swedish Financial Benchmark Facility. (n.d.). Stibor [Accessed: 2023-03-10]. https://swfbf.se/

stibor/

Wang, H., Peng, B., Li, D., & Leng, C. (2021). Nonparametric estimation of large covariance

matrices with conditional sparsity. Journal of Econometrics, 223(1), 53–72. https://doi.

org/10.1016/j.jeconom.2020.09.002

27



Ta
bl

e
2:

O
ut

-o
f-

sa
m

pl
e

pe
rf

or
m

an
ce

of
m

in
im

um
va

ri
an

ce
po

rt
fo

lio
s

es
tim

at
ed

w
ith

si
x

co
va

ri
an

ce
m

et
ho

ds
(1

/N
,S

am
pl

e,
L

ed
oi

t-
W

ol
f

Sh
ri

nk
ag

e,
E

W
M

A
,P

O
E

T,
G

la
ss

o,

an
d

th
e

pr
op

os
ed

T
V

-M
V

P)
.P

or
tf

ol
io

sa
re

bu
ilt

on
th

re
e

as
se

t-
po

ol
si

ze
s-

p
“

5
0
,
1
5
0
,
2
5
0

st
oc

ks
ra

nd
om

ly
dr

aw
n

fr
om

th
e

26
1

Sw
ed

is
h

eq
ui

tie
si

n
th

e
da

ta
se

t,
an

d
re

ba
la

nc
ed

ei
th

er
w

ee
kl

y
(P

an
el

A
)

or
m

on
th

ly
(P

an
el

B
).

T
he

in
iti

al
es

tim
at

io
n

w
in

do
w

is
ca

le
nd

ar
ye

ar
20

16
;t

he
ev

al
ua

tio
n

sp
an

s
20

17
-2

01
9.

R
ep

or
te

d
m

et
ri

cs
ar

e
cu

m
ul

at
iv

e
ex

ce
ss

lo
g

re
tu

rn
s

(C
E

R
),

m
ea

n
ex

ce
ss

lo
g

re
tu

rn
s

(M
E

R
),

st
an

da
rd

de
vi

at
io

n
(S

D
),

Sh
ar

pe
ra

tio
(S

R
),

an
d

m
ax

im
um

dr
aw

do
w

n
(M

D
D

).

(a
)W

ee
kl

y
R

eb
al

an
ci

ng

p
=

50
p

=
15

0
p

=
25

0

M
et

ho
d

C
E

R
M

E
R

SD
SR

M
D

D
C

E
R

M
E

R
SD

SR
M

D
D

C
E

R
M

E
R

SD
SR

M
D

D

1/
N

0.
00

30
3.

96
9e

-0
6

0.
00

70
0.

00
06

0.
24

01
0.

04
91

6.
52

3e
-0

5
0.

00
66

0.
00

99
0.

24
22

0.
10

63
1.

41
3e

-0
4

0.
00

65
0.

02
18

0.
20

71

Sa
m

pl
e

0.
42

10
5.

59
9e

-0
4

0.
00

64
0.

08
75

0.
10

76
0.

29
75

3.
95

6e
-0

4
0.

00
59

0.
06

68
0.

12
18

0.
16

42
2.

18
4e

-0
4

0.
00

70
0.

03
11

0.
15

68

Sh
ri

nk
0.

36
87

4.
90

3e
-0

4
0.

00
63

0.
07

80
0.

10
81

0.
23

85
3.

17
1e

-0
4

0.
00

56
0.

05
67

0.
13

46
0.

24
38

3.
24

2e
-0

4
0.

00
51

0.
06

35
0.

14
85

E
W

M
A

0.
41

56
5.

52
7e

-0
4

0.
00

64
0.

08
64

0.
10

71
0.

29
91

3.
97

8e
-0

4
0.

00
60

0.
06

68
0.

12
75

0.
17

18
2.

28
5e

-0
4

0.
00

70
0.

03
25

0.
15

69

PO
E

T
0.

60
72

8.
07

5e
-0

4
0.

00
71

0.
11

43
0.

10
03

0.
42

94
5.

71
0-

04
0.

00
58

0.
09

78
0.

09
90

0.
45

06
5.

99
2e

-0
4

0.
00

56
0.

10
67

0.
07

98

G
la

ss
o

0.
03

09
4.

11
4e

-0
5

0.
00

68
0.

00
60

0.
22

92
0.

06
34

8.
42

9e
-0

5
0.

00
66

0.
01

28
0.

23
45

0.
12

10
1.

60
9e

-0
4

0.
00

65
0.

02
49

0.
20

45

T
V-

M
V

P
0.

31
29

4.
16

0e
-0

4
0.

00
66

0.
06

32
0.

11
81

0.
23

48
3.

12
3e

-0
4

0.
00

56
0.

05
58

0.
11

43
0.

27
85

3.
70

4e
-0

4
0.

00
53

0.
07

03
0.

11
42

(b
)M

on
th

ly
R

eb
al

an
ci

ng

p
=

50
p

=
15

0
p

=
25

0

M
et

ho
d

C
E

R
M

E
R

SD
SR

M
D

D
C

E
R

M
E

R
SD

SR
M

D
D

C
E

R
M

E
R

SD
SR

M
D

D

1/
N

0.
00

30
3.

96
9e

-0
6

0.
00

70
0.

00
06

0.
24

01
0.

04
91

6.
52

3e
-0

5
0.

00
66

0.
00

99
0.

24
22

0.
10

63
1.

41
3e

-0
4

0.
00

65
0.

02
18

0.
20

71

Sa
m

pl
e

0.
42

50
5.

65
2e

-0
4

0.
00

64
0.

08
81

0.
10

90
0.

29
68

3.
94

6e
-0

4
0.

00
60

0.
06

58
0.

12
56

0.
15

65
2.

08
2e

-0
4

0.
00

82
0.

02
55

0.
14

88

Sh
ri

nk
0.

36
87

4.
90

3e
-0

4
0.

00
63

0.
07

78
0.

10
95

0.
24

76
3.

29
2e

-0
4

0.
00

57
0.

05
82

0.
13

36
0.

26
81

3.
56

5e
-0

4
0.

00
51

0.
06

94
0.

14
19

E
W

M
A

0.
43

25
5.

75
2e

-0
4

0.
00

64
0.

09
00

0.
10

70
0.

31
99

4.
25

4e
-0

4
0.

00
60

0.
07

07
0.

12
07

0.
17

26
2.

29
5e

-0
4

0.
00

82
0.

02
81

0.
14

36

PO
E

T
0.

56
44

7.
50

5e
-0

4
0.

00
70

0.
09

82
0.

11
24

0.
43

59
5.

79
6e

-0
4

0.
00

59
0.

09
90

0.
09

89
0.

44
62

5.
93

4e
-0

4
0.

00
56

0.
10

55
0.

07
98

G
la

ss
o

0.
03

00
3.

98
7e

-0
5

0.
00

69
0.

00
58

0.
22

95
0.

06
25

8.
31

6e
-0

5
0.

00
66

0.
01

27
0.

23
50

0.
12

05
1.

60
3e

-0
4

0.
00

65
0.

02
48

0.
20

46

T
V-

M
V

P
0.

23
37

3.
10

8e
-0

4
0.

00
66

0.
04

69
0.

13
52

0.
22

52
2.

99
4e

-0
4

0.
00

57
0.

05
22

0.
14

21
0.

25
66

3.
41

3e
-0

4
0.

00
54

0.
06

37
0.

13
99

28



Ta
bl

e
3:

O
ut

-o
f-

sa
m

pl
e

pe
rf

or
m

an
ce

of
m

in
im

um
va

ri
an

ce
po

rt
fo

lio
s

es
tim

at
ed

w
ith

si
x

co
va

ri
an

ce
m

et
ho

ds
(1

/N
,S

am
pl

e,
L

ed
oi

t-
W

ol
f

Sh
ri

nk
ag

e,
E

W
M

A
,P

O
E

T,
G

la
ss

o,

an
d

th
e

pr
op

os
ed

T
V

-M
V

P)
.P

or
tf

ol
io

sa
re

bu
ilt

on
th

re
e

as
se

t-
po

ol
si

ze
s-

p
“

5
0
,
1
5
0
,
2
5
0

st
oc

ks
ra

nd
om

ly
dr

aw
n

fr
om

th
e

26
1

Sw
ed

is
h

eq
ui

tie
si

n
th

e
da

ta
se

t,
an

d
re

ba
la

nc
ed

ei
th

er
w

ee
kl

y
(P

an
el

A
)

or
m

on
th

ly
(P

an
el

B
).

T
he

in
iti

al
es

tim
at

io
n

w
in

do
w

is
ca

le
nd

ar
ye

ar
20

21
;t

he
ev

al
ua

tio
n

sp
an

s
20

22
-2

02
4.

R
ep

or
te

d
m

et
ri

cs
ar

e
cu

m
ul

at
iv

e
ex

ce
ss

lo
g

re
tu

rn
s

(C
E

R
),

m
ea

n
ex

ce
ss

lo
g

re
tu

rn
s

(M
E

R
),

st
an

da
rd

de
vi

at
io

n
(S

D
),

Sh
ar

pe
ra

tio
(S

R
),

an
d

m
ax

im
um

dr
aw

do
w

n
(M

D
D

).

(a
)W

ee
kl

y
R

eb
al

an
ci

ng

p
=

50
p

=
15

0
p

=
25

0

M
et

ho
d

C
E

R
M

E
R

SD
SR

M
D

D
C

E
R

M
E

R
SD

SR
M

D
D

C
E

R
M

E
R

SD
SR

M
D

D

1/
N

-0
.4

86
3

-6
.4

32
e-

4
0.

01
20

-0
.0

53
6

0.
51

70
-0

.6
02

8
-7

.9
74

e-
4

0.
01

14
-0

.0
70

0
0.

53
38

-0
.6

57
6

-8
.7

00
e-

4
0.

01
09

-0
.0

79
5

0.
52

50

Sa
m

pl
e

-0
.1

85
8

-2
.4

57
e-

4
0.

00
94

-0
.0

26
3

0.
30

37
-0

.2
38

2
-3

.1
51

e-
4

0.
00

74
-0

.0
42

3
0.

37
27

-0
.2

79
8

-3
.7

01
e-

4
0.

01
18

-0
.0

31
4

0.
48

59

Sh
ri

nk
-0

.2
61

6
-3

.4
61

e-
4

0.
00

96
-0

.0
36

0
0.

38
82

-0
.4

40
4

-5
.8

25
e-

4
0.

00
76

-0
.0

76
4

0.
46

83
-1

.0
12

4
-1

.3
39

e-
3

0.
01

34
-0

.0
99

8
0.

65
92

E
W

M
A

-0
.1

79
5

-2
.3

75
e-

4
0.

00
94

-0
.0

25
1

0.
29

55
-0

.2
45

9
-3

.2
53

e-
4

0.
00

74
-0

.0
43

7
0.

37
69

-0
.3

00
7

-3
.9

77
e-

4
0.

01
21

-0
.0

32
9

0.
49

32

PO
E

T
0.

00
64

8.
44

9e
-6

0.
01

00
0.

00
09

0.
23

14
-0

.0
49

8
-6

.5
89

e-
5

0.
00

70
-0

.0
09

6
0.

19
50

-0
.3

25
0

-4
.3

12
e-

4
0.

00
71

-0
.0

60
3

0.
36

51

G
la

ss
o

-0
.4

59
7

-6
.0

81
e-

4
0.

01
18

-0
.0

51
4

0.
50

26
-0

.5
76

6
-7

.6
26

e-
4

0.
01

13
-0

.0
67

5
0.

52
53

-0
.6

30
4

-8
.3

39
e-

4
0.

01
09

-0
.0

76
7

0.
51

88

T
V-

M
V

P
-0

.1
50

0
-1

.9
85

e-
4

0.
00

97
-0

.0
20

5
0.

28
48

-0
.1

99
9

-2
.6

45
e-

4
0.

00
67

-0
.0

39
7

0.
28

59
-0

.3
24

8
-4

.2
97

e-
4

0.
00

70
-0

.0
61

8
0.

36
42

(b
)M

on
th

ly
R

eb
al

an
ci

ng

p
=

50
p

=
15

0
p

=
25

0

M
et

ho
d

C
E

R
M

E
R

SD
SR

M
D

D
C

E
R

M
E

R
SD

SR
M

D
D

C
E

R
M

E
R

SD
SR

M
D

D

1/
N

-0
.4

86
3

-6
.4

32
e-

4
0.

01
20

-0
.0

53
6

0.
51

70
-0

.6
02

8
-7

.9
74

e-
4

0.
01

14
-0

.0
70

0
0.

53
38

-0
.6

57
6

-8
.6

99
e-

4
0.

01
09

-0
.0

79
5

0.
52

50

Sa
m

pl
e

-0
.1

99
4

-2
.6

38
e-

4
0.

00
94

-0
.0

28
0

0.
31

43
-0

.2
77

9
-3

.6
75

e-
4

0.
00

76
-0

.0
48

2
0.

38
87

-0
.1

92
8

-2
.5

51
e-

4
0.

01
12

-0
.0

22
8

0.
45

9

Sh
ri

nk
-0

.2
71

6
-3

.5
93

e-
4

0.
00

97
-0

.0
37

1
0.

39
64

-0
.4

53
5

-5
.9

99
e-

4
0.

00
77

-0
.0

77
9

0.
47

33
-1

.0
04

7
-1

.3
29

e-
3

0.
01

34
-0

.0
99

0
0.

65
71

E
W

M
A

-0
.1

76
3

-2
.3

32
e-

4
0.

00
94

-0
.0

24
9

0.
30

12
-0

.2
75

6
-3

.6
46

e-
4

0.
00

76
-0

.0
47

7
0.

38
95

-0
.1

92
6

-2
.5

48
e-

4
0.

01
12

-0
.0

22
8

0.
45

50

PO
E

T
-0

.0
56

4
-7

.4
55

e-
5

0.
01

00
-0

.0
07

5
0.

22
91

-0
.0

81
7

-1
.0

81
e-

4
0.

00
70

-0
.0

15
5

0.
21

56
-0

.3
53

1
-4

.6
71

e-
4

0.
00

73
-0

.0
64

1
0.

38
09

G
la

ss
o

-0
.4

58
8

-6
.0

68
e-

4
0.

01
18

-0
.0

51
3

0.
50

22
-0

.5
77

8
-7

.6
42

e-
4

0.
01

13
-0

.0
67

6
0.

52
54

-0
.6

31
9

-8
.3

59
e-

4
0.

01
09

-0
.0

76
9

0.
51

90

T
V-

M
V

P
-0

.0
59

5
-7

.8
70

e-
5

0.
01

02
-0

.0
07

7
0.

23
01

-0
.1

97
4

-2
.6

11
e-

4
0.

00
67

-0
.0

39
1

0.
30

38
-0

.3
38

5
-4

.5
00

e-
4

0.
00

66
-0

.0
67

5
0.

37
72

29


