Package 'StratPal'

August 23, 2024

Title Stratigraphic Paleobiology Modeling Pipelines

Version 0.1.1

Description The fossil record is a joint expression of ecological, taphonomic, evolutionary, and stratigraphic processes (Holland and Patzkowsky, 2012, ISBN:978-0226649382).

This package allowing to simulate biological processes in the time domain (e.g., trait evolution, fossil abundance), and examine how their expression in the rock record (stratigraphic domain) is influenced based on age-depth models, ecological niche models, and taphonomic effects. Functions simulating common processes used in modeling trait evolution or event type data such as first/last occurrences are provided and can be used standalone or as part of a pipeline. The package comes with example data sets and tutorials in several vignettes, which can be used as a template to set up one's own simulation.

```
License Apache License (>= 2)
Encoding UTF-8
RoxygenNote 7.3.2
Imports admtools (>= 0.3.0)
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Depends R (>= 4.2)
LazyData true
URL https://mindthegap-erc.github.io/StratPal/,
     https://github.com/MindTheGap-ERC/StratPal
BugReports https://github.com/MindTheGap-ERC/StratPal/issues
Config/testthat/edition 3
NeedsCompilation no
Author Niklas Hohmann [aut, cre] (<a href="https://orcid.org/0000-0003-1559-1838">https://orcid.org/0000-0003-1559-1838</a>)
Maintainer Niklas Hohmann < N. H. Hohmann@uu.nl>
Repository CRAN
Date/Publication 2024-08-23 10:00:13 UTC
```

2 apply_niche

Contents

appl	y_niche apply niche model to events	
Index		 14
	thin	 13
	stasis	
	snd_niche	
	scenarioA	 10
	rej_samp	 9
	random_walk	 8
	p3_var_rate	 7
	p3	 6
	ornstein_uhlenbeck	 5
	bounded_niche	
	apply_taphonomy	 3
	apply_niche	 2

Description

Models niches by removing events (fossil occurrences) when they are outside of their niche using the function thin. Combines the functions niche_def and gc ("gradient change") to determine how the taxons' collection probability changes with time/position. This is done by composing niche_def and gc. The result is then used as a thinning on the events x.

Usage

```
apply_niche(x, niche_def, gc)
```

Arguments

X	events, e.g. times/ages of fossil occurrences or their stratigraphic position.
^	events, e.g. times/ages of fossil occurrences of their stratigraphic position.
niche_def	function, specifying the niche along a gradient. Should return 0 when taxon is outside of niche, and 1 when inside niche. Values between 0 and 1 are interpreted as collection probabilities.
gc	function, stands for "gradient change". Specifies how the gradient changes, e.g.
80	with time

Value

numeric vector, timing/location of events (e.g. fossil ages/locations) preserved after the niche model is applied

See Also

apply_taphonomy() to model taphonomic effects based on the same principle, thin() for the underlying mathematical procedure. Basic niche models available are bounded_niche() and snd_niche() apply_taphonomy 3

Examples

```
## setup
# using water depth as gradient
t = scenarioA$t_myr
wd = scenarioA$wd_m[,"8km"]
gc = approxfun(t, wd)
plot(t, gc(t), type = "l", xlab = "Time", ylab = "water depth [m]",
 main = "gradient change with time")
 # define niche
# preferred wd 10 m, tolerant to intermediate wd changes (standard deviation 10 m), non-terrestrial
niche_def = snd_niche(opt = 10, tol = 10, cutoff_val = 0)
 plot(seq(-1, 50, by = 0.5), niche_def(seq(-1, 50, by = 0.5)), type = "1",
 xlab = "water depth", ylab = "collection probability", main = "Niche def")
 # niche pref with time
 plot(t, niche_def(gc(t)), type = "l", xlab = "time",
ylab = "collection probability", main = "collection probability with time")
 ## simulate fossil occurrences
 foss\_occ = p3(rate = 100, from = 0, to = max(t))
 # foss occ without niche pref
hist(foss_occ, xlab = "time")
 foss_occ_niche = apply_niche(foss_occ, niche_def, gc)
 # fossil occurrences with niche preference
 hist(foss_occ_niche, xlab = "time")
 # see also
 #vignette("event_data")
 # for a detailed example on niche modeling
```

apply_taphonomy

model taphonomic effects

Description

Models taphonomy by combining the change in taphonomic conditions with the preservation potential as a function of taphonomic conditions to determine how preservation potential changes. This is then used to systematically remove (thin) the event data using thin.

Usage

```
apply_taphonomy(x, pres_potential, ctc)
```

Arguments

x events, e.g. times/ages of fossil occurrences or their stratigraphic position.

4 bounded_niche

pres_potential function. Takes taphonomic conditions as input and returns the preservation

potential (a number between 0 and 1)

ctc function, change in taphonomic conditions (ctc) with time or stratigraphic posi-

tion.

Value

numeric vector, location/timing of events (e.g. fossil occurrences) after the taphonomic filter is applied

See Also

apply_niche() for modeling niche preferences based on the same principle, thin() for the underlying mathematical procedure.

Examples

```
# see
#vignette("advanced_functionality")
# for details on usage
```

bounded_niche

define niche from boundaries

Description

Defines a simple niche model where the niche defined is given by a lower limit (g_min) and an upper limie (g_max) of a gradient the taxon can tolerate

Usage

```
bounded_niche(g_min, g_max)
```

Arguments

g_min lowest value of the gradient the taxon can tolerate
g_max highest value of the gradient the taxon can tolerate

Value

a function describing the niche for usage with apply_niche. The function returns 1 if the taxon is within its niche (the gradient is between g_min and g_max), and 0 otherwise

See Also

snd_niche() for an alternative niche model, apply_niche() for the function that uses the function
returned

ornstein_uhlenbeck 5

Examples

```
x = seq(0, 10, by = 0.2)
f = bounded_niche(2,5)
plot(x, f(x), type = "1",
xlab = "Gradient", ylab = "Observation probability",
main = "Observation probability of taxon")
# see also
#vignette("event_data")
# for details how to use this functionality
```

ornstein_uhlenbeck

simulate ornstein-uhlenbeck (OU) process

Description

Simulates an Ornstein-Uhlenbeck process using the Euler-Maruyama method. The process is simulated on a scale of 0.25 * min(diff(t)) and then interpolated to the values of t.

Usage

```
ornstein_uhlenbeck(t, mu = 0, theta = 1, sigma = 1, y0 = 0)
```

Arguments

t	times at which the process is simulated. Can be heterodistant
mu	scalar, long term mean
theta	scalar, mean reversion speed
sigma	positive scalar, strength of randomness
y0	scalar, initial value (value of process at the first entry of t)

Value

A list with two elements: t and y. t is a duplicate of the input t, y are the values of the OU process at these times. Output list is of S3 class timelist (inherits from list) and can thus be plotted directly using plot, see ?admtools::plot.timelist

```
library("admtools") # required for plotting of results t = seq(0, 3, by = 0.01)  
l = ornstein_uhlenbeck(t, y0 = 3) # start away from optimum (mu) plot(1, type = "1")  
l2 = ornstein_uhlenbeck(t, y0 = 0) # start in optimum lines(12$t, 12$y, col = "red")
```

6 *p3*

p3

simulate Poisson point process

Description

Simulates events in the interval from to to based on a Poisson point process with rate rate. If the parameter n is used, the number of fossils is conditioned to be n In the context of paleontology, these events can be interpreted as fossil occurrences or first/last occurrences of species. In this case, the rate is the average number of fossil occurrences (resp first/last occurrences) per unit

Usage

```
p3(rate, from, to, n = NULL)
```

Arguments

rate	strictly positive scalar, rate of events (avg events per unit)
from	lowest boundary of observed interval
to	upper boundary of observed interval
n	integer of NULL (default). Number of events to return. If NULL, the number is
	random and determined by the rate parameter

Value

a numeric vector with timing/location of events.

See Also

```
p3_var_rate() for the variable rate implementation
```

```
# for fossil occ.
x = p3(rate = 5, from = 0, to = 1) # 5 fossil occurrences per myr on avg.
hist(x, xlab = "Time (Myr)", ylab = "Fossil Occurrences")

x = p3(rate = 3, from = 0, to = 4)
hist(x, main = paste0(length(x), " samples")) # no of events is random

x = p3(rate = 3, from = 0, to = 4, n = 10)
hist(x, main = paste0(length(x), " samples")) # no of events is fixed to n

# see also
#vignette("event_data")
# for details on usage and applications to paleontology
```

p3_var_rate 7

n3	var	rate
PJ.	_vai_	_ıate

simulate variable rate Poisson point process

Description

simulates events based on a variable rate Poisson point process. Rates can be either specified by a function passed to x, or by providing two vectors x and y. In this case the rate is specified by approxfun(x, y, rule = 2), i.e. by linear interpolation between the values of x (abscissa) and y (ordinate) In the context of paleontology, these events can be interpreted as fossil occurrences or first/last occurrences of species. In this case, the rate is the average number of fossil occurrences (resp first/last occurrences) per unit

Usage

```
p3\_var\_rate(x, y = NULL, from = 0, to = 1, f\_max = 1, n = NULL)
```

Arguments

X	numeric vector or function. If x is a function, it is used to specify the variable rate. If x is a vector, x and y together specify the variable rate using linear interpolation
у	numeric vector. If specified, determines the variable rate. This is done by using linear interpolation between the values of y. Here x specifies the ordinate and y the abscissa
from	lower boundary of the observed interval
to	upper boundary of the observed
f_max	maximum value of x in the interval from x_min to x_max . If x attains values larger than f_max a warning is throw, f_max is adjusted, and sampling is started again
n	NULL or an integer. Number of events drawn. If NULL, the number of events is determined by the rate (specified by x and y). If an integer is passed, n events are returned.

Value

numeric vector, timing/location of events. Depending on the modeling framework, tyese events can represent location/age of fossils, or first/last occurrences of a group of taxa.

See Also

p3() for the constant rate implementation, rej_samp() for the underlying random number generation.

8 random_walk

Examples

```
# assuming events are fossil occurrences
# then rate is the avg rate of fossil occ. per unit
#linear decrease in rate from 50 at x = 0 to 0 at x = 1
x = c(0, 1)
y = c(50, 0)
s = p3_var_rate(x, y, f_max = 50)
hist(s, xlab = "Time (myr)", main = "Fossil Occurrences")
# conditioned to return 100 samples
s = p3_var_rate(x, y, f_max = 50, n = 100)
# hand over function
s = p3_var_rate(x = sin, from = 0 , to = 3 * pi, n = 50)
hist(s) # note that negative values of f (sin) are ignored in sampling
# see also
#vignette("event_data")
# for details on usage and applications to paleontology
```

random_walk

continuous time random walk

Description

Simulates a (continuous time) random walk as a Brownian drift

Usage

```
random_walk(t, sigma = 1, mu = 0, y0 = 0)
```

Arguments

t	numeric vector with strictly increasing elements, can be heterodistant. Times at which the random walk is evaluated
sigma	positive scalar, variance parameter
mu	scalar, directionality parameter
y0	scalar, starting value (value of the random walk at the first entry of t)

Value

A list with elements t and y. t is a duplicate of the input parameter and is the times at which the random walk is evaluated. y are the values of the random walk at said times. Output list is of S3 class timelist (inherits from list) and can thus be plotted directly using plot, see ?admtools::plot.timelist

rej_samp 9

Examples

```
library("admtools") # required for plotting of results t = seq(0, 1, by = 0.01)  
1 = random_walk(t, sigma = 3) # high variability, no direction plot(1, type = "1")  
12 = random_walk(t, mu = 1) # low variabliity, increasing trend lines(12$t, 12$y, col = "red")
```

rej_samp

rejection sampling

Description

Rejection sampling from the (pseudo) pdf f in the interval between x_min and x_max. Returns n samples. Note that values of f below 0 are capped to zero

Usage

```
rej_samp(f, x_min, x_max, n = 1L, f_max = 1)
```

Arguments

f	function. (pseudo) pdf from which the sample is drawn
x_min	scalar. lower limit of the examined interval
x_max	scalar. upper limit of the examined interval
n	integer. number of samples drawn
f_max	maximum value of f in the interval from x_min to x_max. If f attains values larger than f_max a warning is throw, f_max is adjusted, and sampling is started again

Value

numeric vector, sample of size n drawn from the (pseudo) pdf specified by f

See Also

p3_var_rate() for the derived variable rate Poisson point process implementation.

```
f = \sin x = rej\_samp(f, 0, 3*pi, n = 100)
hist(x) # note that no samples are drawn where sin is negative
```

10 scenarioA

scenarioA

example data, scenario A from Hohmann et al. (2024)

Description

Scenario A as described in Hohmann et al. (2024), published in Hohmann et al. (2023). Contains data from a carbonate platform simulated using CarboCAT Lite (Burgess 2013, 2023)

Usage

scenarioA

Format

A list with 6 elements:

- t_myr: numeric vector. timesteps of the simulation in Myr
- sl_m: numeric vector. eustatic sea level in m
- dist_from_shore: character vector. Distance from shore in km of locations at which the observations were made
- h_m: matrix of size length(t_myr) x length(dist_from_shore). Accumulated sediment height in m at examined locations
- wd_m: matrix of size length(t_myr) x length(dist_from_shore). Water depth in m at examined locations
- strat_col: list with length(dist_from shore) elements. Represents a stratigraphic column. Each element is a list with two elements:
 - bed_thickness_m: numeric vector. Bed thickness in m
 - facies_code : integer vector. facies code of the bed

References

- Burgess, Peter. 2013. "CarboCAT: A cellular automata model of heterogeneous carbonate strata." Computers & Geosciences. doi:10.1016/j.cageo.2011.08.026.
- Burgess, Peter. 2023. "CarboCATLite v1.0.1." Zenodo. doi:10.5281/zenodo.8402578
- Hohmann, Niklas; Koelewijn, Joël R.; Burgess, Peter; Jarochowska, Emilia. 2024. "Identification of the mode of evolution in incomplete carbonate successions." BMC Ecology and Evolution, In Press. doi:10.1101/2023.12.18.572098.
- Hohmann, Niklas, Koelewijn, Joël R.; Burgess, Peter; Jarochowska, Emilia. 2023. "Identification of the Mode of Evolution in Incomplete Carbonate Successions Supporting Data."
 Open Science Framework. doi:10.17605/OSF.IO/ZBPWA, published under the CC-BY 4.0 license.

snd_niche 11

snd_niche	simple niche model	

Description

Defines niche model based in the "Probability of collection" model by Holland and Patzkowsky (1999). The collection probability follows the shape of a bell curve across a gradient, where opt determines the peak (mean) of the bell curve, and tol the standard deviation. "snd" stands for "scaled normal distribution", as the collection probability has the shape of the probability density of the normal distribution.

Usage

```
snd_niche(opt, tol, prob_modifier = 1, cutoff_val = NULL)
```

Arguments

opt	optimum value, gradient value where collection probability is highest
tol	tolerance to changes in gradient. For large values, collection probability drops off slower away from opt
prob_modifier	collection probability modifier, collection probability at opt.
cutoff_val	NULL or a number. If a number, all collection probabilities at gradient values below cutoff_value are set to 0. This can for example be used to model exclusively marine species when the gradient is water depth (see examples).

Value

a function for usage with apply_niche.

References

 Holland, Steven M. and Patzkowsky, Mark E. 1999. "Models for simulating the fossil record." Geology. https://doi.org/10.1130/0091-7613(1999)027%3C0491:MFSTFR%3E2.3.CO;2

See Also

apply_niche() for usage of the returned function, bounded_niche() for another niche model

```
# using water depth as niche
wd = seq(-3, 40, by = 0.5)
f = snd_niche(opt = 10, tol = 5)

plot(wd, f(wd), xlab = "Water depth", ylab = "Prob. of collection")
# set cutoff value at to 0 to model non-terrestrial species.
f = snd_niche(opt = 10, tol = 5, cutoff_val = 0)
```

12 stasis

```
plot(wd, f(wd), xlab = "Water depth", ylab = "Prob. of collection")
# see also
#vignette("event_data")
#for examples how to use it for niche modeling
```

stasis

simulate phenotypic stasis

Description

Simulates stasis as independent, normally distributed random variables with mean mean and standard deviation sd

Usage

```
stasis(t, mean = 0, sd = 1)
```

Arguments

t times at which the traits are determined

mean scalar, mean trait value

sd strictly positive scalar, standard deviation of traits

Value

A list with two elements: t and y. t is a duplicate of the input t, y are the corresponding trait values. Output list is of S3 class timelist (inherits from list) and can thus be plotted directly using plot, see ?admtools::plot.timelist

```
library("admtools") # required for plotting of results t = seq(0, 1, by = 0.01)  
l = stasis(t)  
plot(1, type = "l") # plot lineage  
l2 = stasis(t, mean = 0.5, sd = 0.3) # simulate second lineage  
lines(l2$t, l2$y, col = "red") # plot second lineage
```

thin 13

thin

thin a series of events (e.g. fossil occurrences)

Description

Thins a vector of events using the function thin, meaning the probability that the ith event in x is preserved is given by thin(x(i)). Values of thin below 0 and above 1 are ignored. Is used to model niche preferences in apply_niche and taphonomic effects in apply_taphonomy.

Usage

```
thin(x, thin)
```

Arguments

x numeric vectors with events (e.g. locations, height, times)

thin a function used for thinning

Value

numeric vector, events after thinning. Depending on the modeling framework, these events can represent fossil ages/locations or first/last occurrences, and the thinning taphonomic or ecological effects.

See Also

```
apply_niche() and apply_taphonomy() for use cases with biological meaning
```

```
x = p3(\text{rate} = 100, \text{ from} = 0, \text{ to} = 3 * pi) \text{ # simulate Poisson point process}

y = \text{thin}(x, \sin)

\text{hist}(y) \text{ # not how negative values of sin are treated as 0}

yy = \text{thin}(x, \text{function}(x) 5 * \sin(x))

\text{hist}(yy) \text{ # note how values of 5 * sin above 1 are not affecting the thinning}
```

Index

```
\ast datasets
    scenarioA, 10
apply_niche, 2
apply_niche(), 4, 11, 13
apply_taphonomy, 3
apply_taphonomy(), 2, 13
bounded_niche, 4
bounded_niche(), 2, 11
ornstein_uhlenbeck, 5
p3, 6
p3(), 7
p3_var_rate, 7
p3_var_rate(), 6, 9
{\tt random\_walk}, {\color{red} 8}
rej_samp, 9
rej_samp(), 7
scenarioA, 10
snd_niche, 11
snd_niche(), 2, 4
stasis, 12
thin, 13
thin(), 2, 4
```