Package ‘SmoothWin’

October 12, 2022
Type Package
Version 3.0.0
Date 2019-07-26
Author Hamed Haselimashhadi <hamedhm@ebi.ac. uk>
Maintainer Hamed Haselimashhadi <hamedhm@ebi.ac.uk>
Depends R (>=3.5)

Description The main function in the package utilizes a windowing function in the form of an expo-
nential weighting function to linear models. The bandwidth and sharpness of the win-
dow are controlled by two parameters. Then, a series of tests are used to identify the right param-
eters of the window (see Hamed Haselimash-
hadi et al (2019) <https://www.biorxiv.org/content/10.1101/656678v1>).

Title Soft Windowing on Linear Regression
License LGPL (>=2)

Imports nlme, Rfast

URL http://hamedhaseli.webs.com, https://www.mousephenotype.org/
NeedsCompilation no

Repository CRAN

Date/Publication 2019-07-27 21:40:10 UTC

R topics documented:

expWeight L L e e 2
plot.SmoothWin e 4
SmoothWin e 5
Index 14

https://www.biorxiv.org/content/10.1101/656678v1
http://hamedhaseli.webs.com
https://www.mousephenotype.org/

2 expWeight

expWeight This function computes the smooth windowing weights

Description

The symmetric weight generating function (SWGF). This function computes the exponential weights/kernel
(soft windowing weights) for different shapes (k) and bandwidth (1) and plots the weights.

Usage
expWeight(
t)
k)
1 ,
m=20)
direction = c(1, 1) ,
plot = FALSE ,
zeroCompensation = @ ,
cdf = plogis ,
progress = FALSE ,
)
Arguments
t Vector of numeric time. A vector of positive continuous values for time
k A single positive value for sharpness
1 A single non-negative value for bandwidth
m Vector of indices. The index of the modes on ‘t* (modes are the peak of the
windows)
direction Vector of two numeric values. A vector of the form on (Left,right). The first
element specifies the speed of expansion of the window(s) from the left and the
second value for the right expansion. Setting to (0,1) and (1,0) lead to right and
left expansions of the windows respectively. Default (1,1) that is the window(s)
expand symmetrically from both sides.
plot Logical flag. Setting to TRUE shows a plot of the weights
zeroCompensation
Single non-negative value. Setting to any non-negative value would replace all
(weights =< zeroCompensation) with zeroCompensation. Default O (zero)
cdf A cdf function preferably symmetric. The cdf function is used for the (window)

weight generating function. The function must have two parameters precisely
a location such as mean and a scale. Standard cdf functions such as pnorm,
pcauchy and plogis (default) can be used. For an example of custom made func-
tion we define uniform function as below:

expWeight 3

punif0 = function(z, mean = 0.5, sd = sqrt(1/12))a = mean — sqrt(3) * sd; b = mean + sqrt(3

progress Logical flag. Setting to TRUE shows the progress of the function

Other parameters that can be passed to the ‘plot()‘ function such as pch, colour
etc.

Value

A numeric vector of weights

Author(s)

Hamed Haselimashhadi <hamedhm @ebi.ac.uk>

See Also

SmoothWin

Examples

par(mfrow = c(4, 1))
B
Example 1 - no merging happends between windows
HHHHEEHEEHE SRR R
weight = expWeight(
t =1:100 ,
k=5 ,
1 =10 ,
m = c(25, 50, 75) ,
plot = TRUE s
#i## Passed parameters to the plot function
type = '1')
1ty = 2 s
lwd = 3 ,
main = '1. If windows do not intersect, then wont merge! (1=10, k=5)'

HHHHHEHEH AR AR
Example 2 - merging in windows
SRR A
weight = expWeight(
t =1:100 ,
k=5 ,
1 =15 ,
m = c(25, 50, 75))
plot = TRUE R
Passed parameters to the plot function
type = '1’ ,
1ty = 2 ,
lwd = 3 ,

4 plot.SmoothWin

main = '2. If windows intersect, then merge! (1=15, k=5)"'

)

B
Example 3.1 - partial merging in windows
HHHHHEHEHE A A
weight = expWeight(
t = 1:100 ,
k =1 ,
1=12 ,
m = c(25, 50, 75) ,
plot = TRUE ,
Passed parameters to the plot function
type = '1' ,
1ty = 2 ,
lwd = 3 ,
main = '3.1 If windows intersect with small k, then partially merge! (1=12, k=1)'

AR A A

Example 3.2 - partial merging in windows

AR AR A
weight = expWeight(
t =1:100 ,
k = .1 ,
1 =12 ,
m = c(25, 50, 75) ,
plot = TRUE ,
Passed parameters to the plot function

lwd = 3 ,
main = '3.2 If windows intersect with small k, then partially merge! (1=12, k=0.1)'

plot.SmoothWin Plot function for the SmoothWin object

Description

This function plots a SmoothWin object

Usage
S3 method for class 'SmoothWin'
plot(x,
ylab = 'Response’ ,
xlab = 'Time (continuous)' s
sub = NULL ,

SmoothWin 5

col = NULL ,
dlglts =2 ’
)
Arguments
X SmoothWin object
ylab Label on the y axis. Default ‘Response*
xlab Label on the x axis. Default ‘Time (continuous)*
sub See the ‘sub‘ parameter in ‘plot()‘ function. If left NULL then some information
about the final window will be shown. Default NULL
col Colour parameter for the points. Set to NULL to use the default colouring (spec-
trum colouring). Default NULL
digits The number of visible digits for 1, k and SWS. Default 2
Optional parameters that can be passed to the ‘plot‘/‘qqPlot® function. See ‘car’
package for the qqPlot function
Author(s)

Hamed Haselimashhadi <hamedhm @ebi.ac.uk>

See Also

SmoothWin

Examples

example(SmoothWin)

SmoothWin Implementation of the soft windowing for linear models

Description

Implementation of the (symmetric) soft windowing on a range of methods/models by imposing
weights on the model.

- The function accepts a model fit, such as ‘Im‘, ‘lme‘, ‘glm* etc., as the input and fits a window to it.

- The parameters "k" and "1" control the shape and bandwidth of the windowing function respec-
tively.

- There are several other parameters to cope with the different scenarios/models/window shapes.

- The default settings of the function is adapted to International Mouse Phenotyping Consortium
(IMPC) statistical pipeline

Usage

SmoothWin(obj
data
t
m
1 =
r

)

r
re

3
K =

min.
lu
r
r
r
re

}

dire

weightFUN

X
3
resi
re
3
pred
pr
3
weig
cdf
chec
sens

pvalThreshold

thre
zero
mess
seed
simp

debug

ect

function(ignore.me.in.default) {

= SmoothWin:::1seq(

from = 1

to = max(abs(t[m] - min(t, na.rm = TRUE))

abs(t[m] - max(t, na.rm = TRUE)), 1)

length.out = min(500, max(1, diff(range(
t,na.rm = TRUE

))))

= unique(round(r))
turn(r)

SmoothWin:::1seq(from = .5

to = 10

length.out = 50)
obs = function(ignore.me.in.default) {
tm = length(unique(tLml))

max(r * lutm, length(m), na.rm = TRUE)
= min(r , length(t), na.rm = TRUE)
turn(r)

ction = c(1, 1)

function(x) {

dFun = function(x) {
sid(x)

ictFun = function(x) {
edict(x)

htORthreshold = 'weight'
= plogis

k =2

itivity =c(1, 1, 1, 0)
c(o, 0, 0, 0)
shold sqrt(.Machine$double.eps) * 10
Compensation = @

ages = TRUE

NULL

FALSE

FALSE

le.output

ifelse(lutm > 1, 35, max(pi * sqrt(length(t)), 35))

SmoothWin

SmoothWin

Arguments

object
data
t

m

min.obs

direction

weightFUN

The fitted model. The object must support ‘update(weights =)‘. See examples
data.frame. Input data that is used to fit the initial model
Vector of (numeric) time values.

Vector of integers (peaks). Mode indices on the time component. For example
10, 11, 12. Note that it is different from t[10], t[11], t[12]

Vector of numeric values for the bandwidth parameter, 1. The default uses the
maximum distance of the modes (t[m]) from the time boundaries, max(max(t)-
t[m],t[m]-min(t)) split on 500 points on the logarithmic scale.

Vector of numeric values for the shape parameter, k. The default uses 50 splits
of the values from 0.5 to 10 on the logarithmic scale.

Single value. The minimum observations/sum weight scores (SWS) that must
be in the total window(s). The default uses the following steps.

1. If there are more than one modes (peaks) in the data, then: 35*(the num-
ber of the unique modes)

2. If there is a single mode in the data, then: max(pi * sqrt(length(t)), 35)

* min.obs must not be less than the total number of observations in the mode
time(s). For example, it can not be less than the number of mutant animals in
the IMPC application.

** to function properly, min.obs should be less than the total number of ob-
servations

*#% min.obs is applied on the total number of observations on all windows NOT
each single window

%% if weightORthreshold="weight’ then min.obs will be evaluated against
SWS

Vector of two non-negative values. A non-negative vector of the form c(Left,right),
for example c(1,1) [default] or c(0.5,0.5) or c(0,1). The first element specifies
the speed of expansion of the window(s) from the left and the second value for
the right expansion. Setting to ¢(0,1) and c(1,0) lead to right and left expan-
sions of the window(s) respectively. Default c(1,1) that is the window(s) expand
symmetrically from both sides.

Weight function. By default, a vector of weights called "ModelWeight" is passed
to this function. See the examples.

SmoothWin

residFun Residual computation function. The default is ‘resid()‘. However, the the user
can define its own function. Note that the input of the function is the model
object. The default is residFun = function(object){resid(object) }

predictFun Similar to residFun but instead defines the ‘predict()‘ function. The default is
predictFun = function(object){ predict(object) }
weightORthreshold

select between weight’ (default) or "threshold’. If set to *weight’ then the sum
of weights (Sum Weight Score (SWS)) would be used as the total number of
(active) observations in the window, otherwise, total number of weights (count
of weights) that are greater than a threshold (see ‘threshold‘ below) (count
weights>=threshold) would be used for the total number of samples in the win-
dow (see ‘threshold).

cdf A cdf function preferably symmetric. The cdf function is used for the (window)
weight generating function (WGF). The cdf function must have two parameters
precisely a location such as mean and a scale. Standard cdf functions such as
‘pnorm°, ‘pcauchy‘ and ‘plogis‘ (default) can be used. For an example of cus-
tom made function we define uniform function as below:

punif0 = function(z, mean = .5, sd = sqrt(1/12))a = mean — sqrt(3) * sd; b = mean + sqrt(3)
check Single integer in {0,1,2}:

- check=1, the function selects the times (t) with more than one observations.
Further, the function only selects the values with weights greater than the ‘thresh-
old (see threshold below). Mostly useful in fitting linear mixed model

- check=2 (default), the function only selects the values with weights greater
than the ‘threshold* parameter

- check=0, disables all checks

sensitivity (Default window selection criteria) Vector of four values (m, v, m*v, normal-
ity_test). For example (default) c(1,1,1,0) specifies the same weights for mean,
variance, mean*variance interaction and zero weight for the test of normality
(shapiro.test) in determining the optimal (final) window. We should stress that
the window size is calculated by detecting the changes amongst the consecutive
means (two sample t.test) and variances (two sample var.test) (as well as the
normality of the first set) from each of predictFun() and residFun() combined
together. For example, (m, v, m*v, normality_test) is calculated for predictFun()
and the same for residFun(), then two means are combined under the ‘sensitiv-
ity ‘[1]; and the same for variance, interactions and the normality.

pvalThreshold Vector of four values. It would be used as the significant level for the mean,
variation and normality tests (for more details see ‘sensitivity* above). If all zero
(default) or (all) negative (<= 0) then the internal adaptive method (sensitivity -
see above) would be used.

threshold Single positive value. The minimum value for weights before removing the cor-
responded samples, given check=1 or check=2 and also in ‘weightORthreshold°.
Default sqrt(.Machine$double.eps)*10 ~ 107-7

SmoothWin 9

zeroCompensation
Single non-negative value. Setting to any non-negative value would replace
all (weights =< zeroCompensation) with ‘zeroCompensation‘. Useful for al-
gorithms that have difficulties with zero. Default 0.

messages Logical value. Set to TRUE (default) to see the errors and warnings
seed seed. Default NULL

simple.output Logical flag. Setting to TRUE leads to not exporting the list of models for I and
k. Useful for preventing memory overflow. Default FALSE

debug Logical flag. Setting to TRUE will show some plots for the parameter selection
step. Useful for debuging. Default FALSE

Other parameters that can be passed to the weightFUN()

Value

final.k, final.l
Final values for k and 1
model.l, model.k, finalModel
List of models for 1, k and the final model.

others The input parameters such as x, y, t and so on

Author(s)

Hamed Haselimashhadi <hamedhm @ebi.ac.uk>

See Also

expWeight

Examples

B s S S
HHHEHHHAEHA A Example in the manuscript
HEHHHHHHHEEH AR HHHEH R
set.seed(1234)

par(mfrow = c(3, 1))

HEFHHHHHHEEHH AR

Simulating data

HHHEHHHEEEE A

n = 60
t=1:n
sd =1
=n/ 2
X =t

c(0 * x[t <= n / 3] ,
x[t<2xn/3&t>n/3]=*1
0 * x[t >= 2 % n / 3]) + rnorm(n, @, sd)
True weights
weights = expWeight(

t
k=5

10

1 =n/6

m=m

plot = @
)

HHHHHHAAHEE
Fitting and ploting data and models
S HEHHHEHHHREHEE R
1 = Im(y ~ x, weights = w)
plot(
X

y
ylim = c(min(y), max(y) * 1.5)

’

’

’

col =t %in% seq(n / 3+ 1, 2 %xn /3 -1) +1,

cex = 1.5
pch = 16
xlab = 'Time'
main = 'Simulated data'
)
abline(v = x[c(n / 3+ 1, 2*n/ 3 -1)],
1ty = 2 ,
lwd = 4 ,
col = 'gray')
abline(l, col =2 , 1ty = 2, 1lwd = 4)
abline(Im(y ~ x) ,

col =3 ,
1ty = 3 ,
lwd = 4)
plot(
t,
w,
type = 'b’)
main = 'True weights',
ylab = 'Weight' ,
xlab = 'Time'
)

HHHHHHHHHEREE AR

Fitting the Windowing model

HHHEHHHEHEEE A

r = SmoothWin(
object =1 R
data = data.frame(y =y, x = x),
t=1t ,
m=m ,
min.obs = 4 ,
debug = FALSE

)

HHHEHHHEHEE A

Plot fitted (windowed) model

HHHEHHARHEEE

plot(r, main = 'Estimated weights from WGF')

AR

’

’

’

SmoothWin

SmoothWin 11

AR Other examples
B S S S S
All examples import the Orthodont dataset from the nlme package
library(nlme)

Sort the data on the time component (age)
Orthodont = Orthodont[order(Orthodont$age), 1

S HEHHHEHHHHREHEE AR

Modes

HHEHHHAHHHHEERE RN

mode = which(Orthodont$age %in% <c(12))
HHHHHHARHEE

Time component

HHHHHEEREEEE A

time = Orthodont$age

f = formula(distance ~ Sex)

AR AR AR
HHHHHEHHHHEHEEEEHEE Examples ##HHHEHHEHEEHBHAHHE
B s s s s

Example 1. Linear model

S PR A

Method 1 (recommanded)

SRR

Im = do.call('lm', list(formula = f, data = Orthodont))
rm(f)

S HEHHRHRHEHREEEE R

Method 2 (can cause error if you pass the formula to the 1lm function)
1Im = Ilm(distance ~ Sex, data = Orthodont)

S HEHHRHEHEHREEEE RN

Im.result = SmoothWin(
object = 1m,
data = Orthodont,
t = time,
m = mode,
check = 0,
weightFUN = function(x) {
X

}Y
debug = TRUE
)
plot(
Im.result,

col = Orthodont$Sex,
pch = as.integer(Orthodont$Sex),
main = 'Simple liner model'’

)

HHEHHHHHHHEHE AR
Example 2. Linear Model Using Generalized Least Squares
Method 1 (recommanded)

12

SmoothWin

I

f = formula(distance ~ Sex)
gls = do.call('gls', list(model = f, data = Orthodont))
rm(f)

AR AR
Method 2 (can cause error if you pass the formula to the gls function)
gls = gls(distance ~ Sex, data = Orthodont)
HHEHHHAHHHHEERE RN
gls.result = SmoothWin(

object = gls,

data = Orthodont,

t = time,

m = mode,

check = 2,

weightFUN = function(ignore.me) {

varFixed(~ 1 / ModelWeight) #nlme package uses the inverse weights

}?
debug = TRUE
)
plot(
gls.result,

col = Orthodont$Sex,
pch = as.integer(Orthodont$Sex),
main = 'Linear model using GLS'

)

S HEHHRHRHEHR AR E AR
Example 3. Linear mixed model
HHHHHHHHHHEREE AR AR
Method 1 (recommanded)
A
fixed = formula(distance ~ Sex)
random = formula(~ 1 | Subject)
Ime = do.call('lme', list(

fixed = fixed,

random = random,

data = Orthodont
)

rm(fixed, random)

HEHHHHHHHEEHE AR
Method 2 (can cause error if you pass the formula to the lme function)
Ime = lme(fixed = distance ~ Sex, random=~1|Subject , data = Orthodont)
HEHHHHHHHEBHE AR
Ime.result = SmoothWin(

object = lme,

data = Orthodont,

t = time,

m = mode,

Remove zero weights as well as single observation dates

check = 1,

weightFUN = function(ignore.me) {

SmoothWin

varFixed(~ 1 / ModelWeight)

}Y
debug = TRUE
)
plot(
Ime.result,

col = Orthodont$Sex,
pch = as.integer(Orthodont$Sex),
main = 'Linear mixed model'’

13

Index

* SmoothWin
SmoothWin, 5

* Windowing
SmoothWin, 5

expWeight, 2, 9
plot.SmoothWin, 4

SmoothWin, 3, 5,5

14

	expWeight
	plot.SmoothWin
	SmoothWin
	Index

