
Package ‘SignalY’
January 28, 2026

Type Package

Title Signal Extraction from Panel Data via Bayesian Sparse Regression
and Spectral Decomposition

Version 1.1.0

Author Jose Mauricio Gomez Julian [aut, cre] (ORCID:
<https://orcid.org/0009-0000-2412-3150>)

Maintainer Jose Mauricio Gomez Julian <isadore.nabi@pm.me>

Description Provides a comprehensive toolkit for extracting latent signals from
panel data through multivariate time series analysis. Implements spectral
decomposition methods including wavelet multiresolution analysis via maximal
overlap discrete wavelet transform, Percival and Walden (2000)
<doi:10.1017/CBO9780511841040>, empirical mode decomposition for
non-stationary signals, Huang et al. (1998) <doi:10.1098/rspa.1998.0193>,
and Bayesian trend extraction via the Grant-Chan embedded Hodrick-Prescott
filter, Grant and Chan (2017) <doi:10.1016/j.jedc.2016.12.007>. Features
Bayesian variable selection through regularized Horseshoe priors, Piironen
and Vehtari (2017) <doi:10.1214/17-EJS1337SI>, for identifying structurally
relevant predictors from high-dimensional candidate sets. Includes dynamic
factor model estimation, principal component analysis with bootstrap
significance testing, and automated technical interpretation of signal
morphology and variance topology.

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.1.0)

Imports stats, graphics, grDevices, utils, parallel, waveslim (>=
1.8.4), EMD (>= 1.5.9), urca (>= 1.3.3)

Suggests GPArotation, plotly, cmdstanr (>= 0.7.0), posterior (>=
1.5.0), bayesplot (>= 1.10.0), loo (>= 2.6.0), projpred (>=
2.6.0), testthat (>= 3.0.0), knitr, rmarkdown, patchwork

Additional_repositories https://mc-stan.org/r-packages/

VignetteBuilder knitr

RoxygenNote 7.3.3

1

https://orcid.org/0009-0000-2412-3150
https://doi.org/10.1017/CBO9780511841040
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.jedc.2016.12.007
https://doi.org/10.1214/17-EJS1337SI
https://mc-stan.org/r-packages/

2 SignalY-package

URL https://github.com/IsadoreNabi/SignalY

BugReports https://github.com/IsadoreNabi/SignalY/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-28 18:50:17 UTC

Contents
SignalY-package . 2
apply_to_columns . 5
compute_entropy . 6
estimate_dfm . 7
filters . 8
filter_all . 9
filter_emd . 10
filter_hpgc . 12
filter_wavelet . 14
fit_horseshoe . 16
horseshoe . 20
iplot . 20
pca_bootstrap . 20
pca_dfm . 23
plot.signal_analysis . 23
print.signal_analysis . 24
select_by_shrinkage . 24
signal_analysis . 25
summary.signal_analysis . 29
test_unit_root . 29
unit_root . 31

Index 32

SignalY-package SignalY: Signal Extraction from Panel Data via Bayesian Sparse Re-
gression and Spectral Decomposition

Description

SignalY provides a comprehensive methodological framework for extracting latent signals from
panel data through the integration of spectral decomposition methods, Bayesian variable selection,
and automated technical interpretation. The package is designed for researchers working with mul-
tivariate time series who seek to distinguish underlying structural dynamics from phenomenological
noise.

https://github.com/IsadoreNabi/SignalY
https://github.com/IsadoreNabi/SignalY/issues

SignalY-package 3

Philosophical Foundation

The package operationalizes a distinction between latent structure and phenomenological dy-
namics. In complex systems, observed variables often represent the superposition of: (1) underly-
ing generative processes that exhibit persistent, structured behavior; and (2) transient perturbations,
measurement noise, and stochastic fluctuations. SignalY provides tools to decompose this mixture
and identify which candidate variables contribute meaningfully to the latent structure of a target
signal.

This framework recognizes that panel data exhibit multivariate non-linear interdependence: the
relationships between variables may be complex, non-additive, and evolve over time. The methods
implemented here are robust to such complexities while remaining interpretable.

Core Methodological Components

1. Spectral Decomposition (Signal Filtering)
The package implements three complementary approaches to extract trend components from time
series:

• Wavelet Multiresolution Analysis: Using the maximal overlap discrete wavelet transform
(MODWT) with configurable Daubechies wavelets, the signal is decomposed into scale-specific
components. Lower-frequency detail levels (e.g., D3, D4) capture structural dynamics while
higher-frequency levels capture transient noise.

• Empirical Mode Decomposition (EMD): A data-adaptive method that decomposes signals
into intrinsic mode functions (IMFs) without requiring pre-specified basis functions. The
residual component captures the underlying trend.

• Grant-Chan Embedded Hodrick-Prescott Filter: A Bayesian implementation embedding
the HP filter within an unobserved components model, allowing for principled uncertainty
quantification around the extracted trend via Markov Chain Monte Carlo sampling.

2. Bayesian Variable Selection (Horseshoe Regression)
When the target signal Y is constructed from or influenced by a set of candidate variables X, iden-
tifying which candidates are structurally relevant versus informationally redundant is crucial. The
regularized Horseshoe prior provides:

• Adaptive shrinkage: Coefficients for irrelevant variables are strongly shrunk toward zero
(high kappa), while relevant variables escape shrinkage (low kappa).

• Uncertainty quantification: Full posterior distributions over coefficients enable credible in-
terval construction.

• Automatic sparsity detection: The effective number of non-zero coefficients (m_eff) is esti-
mated as part of the model.

3. Dimensionality Reduction and Factor Analysis
For high-dimensional panels, the package provides:

• Principal Component Analysis (PCA): With bootstrap significance testing to identify which
variables load significantly on each component.

• Dynamic Factor Models (DFM): For extracting common factors that drive co-movement in
the panel.

4 SignalY-package

• Entropy-based interpretation: Shannon entropy of loadings distinguishes between diffuse
systemic movement (high entropy) and concentrated structural signals (low entropy).

4. Unit Root and Stationarity Testing

Comprehensive suite of tests to characterize the persistence properties of extracted signals:

• Augmented Dickey-Fuller (ADF) tests with drift and trend options

• Elliott-Rothenberg-Stock (ERS) DF-GLS and P-tests

• Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests

• Phillips-Perron tests

Interpretation Framework

SignalY generates automated technical interpretations based on:

• Signal smoothness: Comparing variance of second differences between original and filtered
series

• Trend persistence: Whether extracted trends are deterministic or stochastic based on unit root
tests

• Information topology: Entropy and distributional fit of PCA loadings indicating structural
concentration

• Sparsity ratio: Proportion of candidate variables shrunk to zero under Horseshoe regression

• Regime detection: Identification of structural breakpoints in mean or volatility

Important Caveats

SignalY provides methodology, not theory. The statistical identification of relevant variables does
not establish causal or structural relationships without supporting domain theory. Users must:

1. Justify variable inclusion based on domain knowledge

2. Interpret sparsity results in theoretical context

3. Recognize that statistical significance is necessary but not sufficient for structural claims

Author(s)

Jose Mauricio Gomez Julian <isadore.nabi@pm.me>

References

Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM.

Grant, A. L., & Chan, J. C. C. (2017). Reconciling output gaps: Unobserved components model
and Hodrick-Prescott filter. Journal of Economic Dynamics and Control, 75, 114-121.

Huang, N. E., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A, 454(1971),
903-995.

apply_to_columns 5

Percival, D. B., & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis. Cambridge
University Press.

Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. Electronic Journal of Statistics, 11(2), 5018-5051.

See Also

• signal_analysis: Master function for complete analysis
• filter_wavelet: Wavelet multiresolution analysis
• filter_emd: Empirical mode decomposition
• filter_hpgc: Grant-Chan HP filter
• fit_horseshoe: Regularized Horseshoe regression

apply_to_columns Apply Function to Matrix Columns

Description

Applies a univariate filtering or transformation function to each column of a matrix and returns a
consolidated data frame. This utility enables batch processing of panel data where each column
represents a different variable or series.

Usage

apply_to_columns(X, FUN, extract = NULL, ..., verbose = FALSE)

Arguments

X Matrix or data frame where each column is a series to process.
FUN Function to apply to each column. Must accept a numeric vector and return ei-

ther a numeric vector of the same length or a list with a named element (specified
by extract).

extract Character string specifying which element to extract from the function output if
it returns a list. Default is NULL (use raw output).

... Additional arguments passed to FUN.
verbose Logical indicating whether to print progress messages.

Value

A data frame with the same number of rows as X, containing the processed output for each column.

Examples

X <- matrix(rnorm(200), ncol = 4)
colnames(X) <- c("A", "B", "C", "D")
result <- apply_to_columns(X, function(x) cumsum(x))

6 compute_entropy

compute_entropy Compute Shannon Entropy

Description

Calculates the Shannon entropy of a probability distribution or, when applied to loadings, the en-
tropy of the squared normalized loadings. High entropy indicates diffuse/uniform distribution (sys-
temic noise), while low entropy indicates concentrated structure.

Usage

compute_entropy(x, base = 2, normalize = FALSE)

Arguments

x Numeric vector. Will be squared and normalized to form a probability distribu-
tion.

base Base of the logarithm. Default is 2 (bits).
normalize Logical. If TRUE, returns normalized entropy (0 to 1 scale).

Details

The Shannon entropy is defined as:

H(p) = −
∑
i

pi log(pi)

where pi are the probabilities. For factor loadings, we use squared normalized loadings as the
probability distribution:

pi = λ2
i /

∑
j

λ2
j

This measures the concentration of explanatory power across variables. Maximum entropy occurs
when all loadings are equal (diffuse structure); minimum entropy occurs when a single variable
dominates (concentrated structure).

Value

Numeric scalar representing entropy value.

Interpretation in Signal Analysis

In the context of latent structure extraction:

• High entropy (near maximum): Suggests "maximum entropy systemic stochasticity" - the
component captures diffuse, undifferentiated movement across all variables (akin to Brownian
motion).

• Low entropy: Suggests "differentiated latent structure" - the component is driven by a subset
of variables, indicating meaningful structural relationships.

estimate_dfm 7

Examples

uniform_loadings <- rep(1, 10)
compute_entropy(uniform_loadings, normalize = TRUE)

concentrated_loadings <- c(10, rep(0.1, 9))
compute_entropy(concentrated_loadings, normalize = TRUE)

estimate_dfm Dynamic Factor Model Estimation

Description

Estimates a Dynamic Factor Model (DFM) to extract common latent factors from panel data. Uses
principal components as initial estimates and optionally refines via EM algorithm.

Usage

estimate_dfm(
X,
r = NULL,
p = 1,
ic = c("IC2", "IC1", "IC3"),
max_factors = NULL,
standardize = TRUE,
verbose = FALSE

)

Arguments

X Matrix or data frame where rows are observations and columns are variables.

r Number of factors. If NULL, determined by information criterion.

p Number of lags in factor VAR dynamics. Default 1.

ic Character string specifying information criterion for factor selection: "IC1",
"IC2", or "IC3" (Bai & Ng, 2002). Default "IC2".

max_factors Maximum number of factors to consider. Default min(10, floor(ncol(X)/2)).

standardize Logical. Standardize variables before estimation. Default TRUE.

verbose Logical for progress messages.

Details

The DFM assumes:
Xit = λ′

iFt + eit

where Ft are common factors, λi are loadings, and eit are idiosyncratic errors. The factors follow
VAR dynamics:

Ft = A1Ft−1 + ...+ApFt−p + ut

8 filters

Factor selection uses the Bai & Ng (2002) information criteria which penalize over-fitting while
consistently estimating the true number of factors.

Value

A list of class "signaly_dfm" containing:

factors Matrix of estimated latent factors (T x r)

loadings Matrix of factor loadings (p x r)

var_coefficients VAR coefficient matrices for factor dynamics

idiosyncratic_var Idiosyncratic variance estimates

r_selected Number of factors selected

ic_values Information criterion values

fitted_values Fitted values from the model

residuals Residuals (idiosyncratic components)

References

Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econo-
metrica, 70(1), 191-221.

Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number
of predictors. Journal of the American Statistical Association, 97(460), 1167-1179.

Examples

set.seed(123)
n <- 100
p <- 20
X <- matrix(rnorm(n * p), ncol = p)
result <- estimate_dfm(X, r = 2)
print(dim(result$factors))

filters Signal Filtering Methods for Trend Extraction

Description

This module implements three complementary spectral decomposition methods for extracting latent
trend signals from time series: wavelet multiresolution analysis, empirical mode decomposition,
and the Grant-Chan embedded Hodrick-Prescott filter.

filter_all 9

filter_all Apply Multiple Filters to a Series

Description

Convenience function that applies all three filtering methods (wavelet, EMD, HP-GC) to a time
series and returns a consolidated comparison of results.

Usage

filter_all(
y,
wavelet_wf = "la8",
wavelet_J = 4,
wavelet_levels = c(3, 4),
hpgc_prior = "weak",
hpgc_chains = 4,
hpgc_iterations = 20000,
hpgc_burnin = 5000,
verbose = FALSE

)

Arguments

y Numeric vector of the time series.
wavelet_wf Wavelet filter for wavelet decomposition. Default "la8".
wavelet_J Wavelet decomposition depth. Default 4.
wavelet_levels Levels to combine for wavelet trend. Default c(3, 4).
hpgc_prior Prior configuration for HP-GC. Default "weak".
hpgc_chains Number of MCMC chains. Default 4.
hpgc_iterations

MCMC iterations. Default 20000.
hpgc_burnin MCMC burn-in. Default 5000.
verbose Logical for progress messages.

Value

A list of class "signaly_multifilter" containing results from all three methods and a comparison data
frame.

Examples

y <- cumsum(rnorm(100)) + sin(seq(0, 4*pi, length.out = 100))
result <- filter_all(y, hpgc_iterations = 5000, hpgc_burnin = 1000)

10 filter_emd

filter_emd Empirical Mode Decomposition Filter

Description

Applies Empirical Mode Decomposition (EMD) to extract intrinsic mode functions (IMFs) from a
time series. Unlike Fourier or wavelet methods, EMD is fully data-adaptive and does not require
pre-specified basis functions, making it suitable for non-stationary and non-linear signals.

Usage

filter_emd(
y,
boundary = "periodic",
max_imf = NULL,
stop_rule = "type1",
tol = NULL,
max_sift = 20,
verbose = FALSE

)

Arguments

y Numeric vector of the time series to decompose.
boundary Character string specifying boundary handling: "periodic" (default), "symmet-

ric", "none", or "wave".
max_imf Maximum number of IMFs to extract. If NULL, extraction continues until the

residue is monotonic.
stop_rule Character string specifying the stopping criterion for sifting: "type1" (default),

"type2", "type3", "type4", or "type5".
tol Tolerance for sifting convergence. Default is sd(y) * 0.1^2.
max_sift Maximum number of sifting iterations per IMF. Default is 20.
verbose Logical indicating whether to print diagnostic messages.

Details

EMD decomposes a signal x(t) into a sum of Intrinsic Mode Functions (IMFs) and a residue:

x(t) =

n∑
j=1

cj(t) + rn(t)

where each IMF cj(t) satisfies two conditions:

1. The number of extrema and zero crossings differ by at most one
2. The mean of upper and lower envelopes is zero at each point

The sifting process iteratively extracts IMFs from highest to lowest frequency until the residue
becomes monotonic (representing the trend).

filter_emd 11

Value

A list of class "signaly_emd" containing:

trend Numeric vector of the extracted trend (original minus residue)

residue Numeric vector of the EMD residue (monotonic trend)

imfs Matrix where each column is an IMF, ordered from highest to lowest frequency

n_imfs Number of IMFs extracted

original Original input series

settings List of parameters used

diagnostics List with IMF statistics

Advantages over Fourier/Wavelet Methods

• Adaptive basis: IMFs are derived from the data itself, not pre-specified

• Handles non-stationarity: Instantaneous frequency can vary over time

• Handles non-linearity: No assumption of linear superposition

• Preserves local structure: Better time localization than Fourier methods

Limitations

• Mode mixing: Different scales may appear in the same IMF

• End effects: Boundary conditions can cause artifacts

• No formal theory: Unlike wavelets, lacks rigorous mathematical foundation

• Reproducibility: Results can vary with stopping criteria

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., &
Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis. Proceedings of the Royal Society A, 454(1971), 903-995.

Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted data
analysis method. Advances in Adaptive Data Analysis, 1(1), 1-41.

See Also

emd, filter_wavelet, filter_hpgc

Examples

set.seed(123)
t <- seq(0, 10, length.out = 200)
y <- sin(2*pi*t) + 0.5*sin(8*pi*t) + 0.1*rnorm(200)
result <- filter_emd(y)
plot(y, type = "l", col = "gray")
lines(result$trend, col = "red", lwd = 2)

12 filter_hpgc

filter_hpgc Grant-Chan Embedded Hodrick-Prescott Filter

Description

Implements the Bayesian Hodrick-Prescott filter embedded in an unobserved components model, as
developed by Grant and Chan (2017). This approach provides principled uncertainty quantification
for the extracted trend through Markov Chain Monte Carlo sampling.

Usage

filter_hpgc(
y,
prior_config = "weak",
n_chains = 4,
iterations = 20000,
burnin = 5000,
verbose = FALSE

)

Arguments

y Numeric vector of the time series. Will be internally scaled for numerical sta-
bility.

prior_config Character string or list specifying prior configuration. Options: "weak" (de-
fault), "informative", or "empirical". Alternatively, a named list with prior pa-
rameters (see Details).

n_chains Integer number of MCMC chains to run. Default is 4.
iterations Integer total number of MCMC iterations per chain. Default is 20000.
burnin Integer number of burn-in iterations to discard. Default is 5000.
verbose Logical indicating whether to print progress messages.

Details

The Grant-Chan model decomposes the observed series yt as:

yt = τt + ct

where τt is the trend component and ct is the cyclical component.

Trend Model (Second-Order Markov Process):

∆2τt = uτ
t , uτ

t ∼ N(0, σ2
τ)

This implies the trend growth rate follows a random walk, allowing for time-varying trend growth.

Cycle Model (Stationary AR(2)):

ct = ϕ1ct−1 + ϕ2ct−2 + uc
t , uc

t ∼ N(0, σ2
c)

with stationarity constraints on ϕ.

filter_hpgc 13

Value

A list of class "signaly_hpgc" containing:

• trend: Numeric vector of posterior mean trend

• trend_lower: Numeric vector of 2.5 percent posterior quantile

• trend_upper: Numeric vector of 97.5 percent posterior quantile

• cycle: Numeric vector of posterior mean cycle component

• cycle_lower: Numeric vector of 2.5 percent posterior quantile

• cycle_upper: Numeric vector of 97.5 percent posterior quantile

• draws: List of posterior draws for all parameters

• diagnostics: Convergence diagnostics including R-hat and ESS

• dic: Deviance Information Criterion

• settings: Parameters used in the analysis

Prior Configurations

weak Diffuse priors allowing data to dominate. Good for initial exploration.

informative Tighter priors based on typical macroeconomic dynamics. Suitable when strong smooth-
ness is desired.

empirical Priors calibrated from data moments. Balances flexibility with data-driven regulariza-
tion.

Custom priors can be specified as a list with elements:

• phi_mu: Mean of phi prior (2-vector)

• phi_v_i: Precision matrix for phi prior (2x2)

• gamma_mu: Mean of gamma (initial trend growth) prior

• gamma_v_i: Precision matrix for gamma prior

• s_tau: Upper bound for uniform prior on σ2
τ

• s_c_shape: Shape parameter for inverse-gamma prior on σ2
c

• s_c_rate: Rate parameter for inverse-gamma prior on σ2
c

Relationship to Standard HP Filter

The standard HP filter solves:

min
τ

∑
t

(yt − τt)
2 + λ

∑
t

(∆2τt)
2

The Grant-Chan approach embeds this within a probabilistic model where λ = σ2
c/σ

2
τ , allowing

this ratio to be estimated from data with full uncertainty quantification.

14 filter_wavelet

References

Grant, A. L., & Chan, J. C. C. (2017). Reconciling output gaps: Unobserved components model
and Hodrick-Prescott filter. Journal of Economic Dynamics and Control, 75, 114-121. doi:10.1016/
j.jedc.2016.12.007

Chan, J., Koop, G., Poirier, D. J., & Tobias, J. L. (2019). Bayesian Econometric Methods (2nd ed.).
Cambridge University Press.

See Also

filter_wavelet, filter_emd

Examples

set.seed(123)
y <- cumsum(rnorm(100)) + sin(seq(0, 4*pi, length.out = 100))
result <- filter_hpgc(y, prior_config = "weak", n_chains = 2,

iterations = 5000, burnin = 1000)
plot(y, type = "l", col = "gray")
lines(result$trend, col = "red", lwd = 2)

filter_wavelet Wavelet Multiresolution Analysis Filter

Description

Performs wavelet-based signal decomposition using the Maximal Overlap Discrete Wavelet Trans-
form (MODWT) to extract trend components at specified frequency scales. This method decom-
poses the signal into detail coefficients (D1, D2, ..., DJ) capturing progressively lower frequencies
and a smooth coefficient (SJ) representing the underlying trend.

Usage

filter_wavelet(
y,
wf = "la8",
J = 4,
boundary = "periodic",
levels_to_combine = c(3, 4),
first_difference = FALSE,
verbose = FALSE

)

https://doi.org/10.1016/j.jedc.2016.12.007
https://doi.org/10.1016/j.jedc.2016.12.007

filter_wavelet 15

Arguments

y Numeric vector of the time series to decompose. Length must be at least 2^J.

wf Character string specifying the wavelet filter. Options include "la8" (least asym-
metric with 8 vanishing moments, 16 coefficients), "la16", "la20", "haar", "d4",
"d6", "d8", etc. Default is "la8".

J Integer specifying the decomposition depth (number of levels). Default is 4,
yielding D1-D4 detail levels plus S4 smooth level.

boundary Character string specifying boundary handling: "periodic" (default) or "reflec-
tion".

levels_to_combine

Integer vector specifying which detail levels to combine for the trend estimate.
Default is c(3, 4) for D3+D4.

first_difference

Logical. If TRUE, applies wavelet to first differences and reconstructs via cu-
mulative sum. Default is FALSE.

verbose Logical indicating whether to print diagnostic messages.

Details

The MODWT (Maximal Overlap Discrete Wavelet Transform) is preferred over the classical DWT
for several reasons relevant to signal extraction:

1. Translation invariance: Unlike DWT, MODWT does not depend on the starting point of the
series, producing consistent results regardless of circular shifts.

2. Any sample size: MODWT can be applied to series of any length, not just powers of 2.

3. Additive decomposition: The MRA (multiresolution analysis) coefficients sum exactly to the
original series.

The choice of wavelet filter affects the trade-off between time and frequency localization:

• la8 (Daubechies least asymmetric, 8 vanishing moments): Good balance of smoothness
and localization, recommended for economic data.

• Higher order (la16, la20): Better frequency resolution at cost of temporal smearing.

• haar: Maximum time localization but poor frequency resolution.

Value

A list of class "signaly_wavelet" containing:

trend Numeric vector of the extracted trend component

mra Full multiresolution analysis object from waveslim::mra

detail_levels Data frame with all detail level coefficients

smooth_level Vector of the smooth (SJ) coefficients

combined_levels Character string indicating which levels were combined

settings List of parameters used in the analysis

diagnostics List with variance decomposition and energy distribution

16 fit_horseshoe

Frequency Interpretation

For a series with unit sampling interval, the detail levels correspond to approximate frequency
bands:

• D1: periods 2-4 (highest frequency noise)

• D2: periods 4-8 (short-term fluctuations)

• D3: periods 8-16 (medium-term cycles)

• D4: periods 16-32 (longer cycles)

• S4: periods > 32 (smooth trend)

For annual economic data, D3+D4 typically captures business cycle dynamics (8-32 year periods),
while D1+D2 captures short-term noise.

References

Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM.

Percival, D. B., & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis. Cambridge
University Press.

Gencay, R., Selcuk, F., & Whitcher, B. (2002). An Introduction to Wavelets and Other Filtering
Methods in Finance and Economics. Academic Press.

See Also

mra, filter_emd, filter_hpgc

Examples

set.seed(123)
y <- cumsum(rnorm(100)) + sin(seq(0, 4*pi, length.out = 100))
result <- filter_wavelet(y, wf = "la8", J = 4)
plot(y, type = "l", col = "gray")
lines(result$trend, col = "red", lwd = 2)

fit_horseshoe Fit Regularized Horseshoe Regression Model

Description

Fits a Bayesian linear regression with regularized Horseshoe prior using Stan via cmdstanr. The
Horseshoe prior provides adaptive shrinkage that aggressively shrinks irrelevant coefficients toward
zero while allowing truly relevant coefficients to remain large.

fit_horseshoe 17

Usage

fit_horseshoe(
y,
X,
var_names = NULL,
p0 = NULL,
slab_scale = 2,
slab_df = 4,
use_qr = TRUE,
standardize = TRUE,
iter_warmup = 2000,
iter_sampling = 2000,
chains = 4,
adapt_delta = 0.99,
max_treedepth = 15,
seed = 123,
verbose = FALSE

)

Arguments

y Numeric vector of the response variable (target signal).

X Matrix or data frame of predictor variables (candidate signals).

var_names Optional character vector of variable names. If NULL, column names of X are
used.

p0 Expected number of non-zero coefficients. If NULL, defaults to P/3 where P is
the number of predictors. This controls the global shrinkage strength.

slab_scale Scale parameter for the regularizing slab. Default is 2. Larger values allow
larger coefficients for selected variables.

slab_df Degrees of freedom for the regularizing slab t-distribution. Default is 4. Lower
values give heavier tails.

use_qr Logical indicating whether to use QR decomposition for improved numerical
stability with correlated predictors. Default TRUE.

standardize Logical indicating whether to standardize predictors internally. Results are re-
turned on original scale. Default TRUE.

iter_warmup Number of warmup (burn-in) iterations per chain. Default 2000.

iter_sampling Number of sampling iterations per chain. Default 2000.

chains Number of MCMC chains. Default 4.

adapt_delta Target acceptance probability for HMC. Higher values reduce divergences but
slow sampling. Default 0.99.

max_treedepth Maximum tree depth for NUTS sampler. Default 15.

seed Random seed for reproducibility.

verbose Logical for progress messages.

18 fit_horseshoe

Details

The regularized Horseshoe prior (Piironen & Vehtari, 2017) models coefficients as:

βj |λj , τ, c ∼ N(0, τ2λ̃2
j)

where the regularized local scale is:

λ̃2
j =

c2λ2
j

c2 + τ2λ2
j

This combines:

• Global shrinkage τ : Controls overall sparsity, with prior calibrated to expected number of
non-zero coefficients p0

• Local shrinkage λj : Half-Cauchy(0,1) allowing individual coefficients to escape shrinkage

• Regularizing slab c: Prevents coefficients from becoming unreasonably large for selected
variables

Value

A list of class "signaly_horseshoe" containing:

coefficients Data frame with posterior summaries for each coefficient including mean, SD, credible
intervals, shrinkage factor kappa, and relevance probabilities

hyperparameters Data frame with posterior summaries for hyperparameters (tau, sigma, alpha,
m_eff)

diagnostics MCMC diagnostics including divergences, R-hat, ESS

loo Leave-one-out cross-validation results

posterior_draws Raw posterior draws for all parameters

fit The cmdstanr fit object (if cmdstanr available)

settings Parameters used in the analysis

sparsity Summary of sparsity pattern

Shrinkage Factor Interpretation

The shrinkage factor κj for each coefficient measures how much it is shrunk toward zero:

κj ≈
1

1 + τ2λ̃2
j

• κj ≈ 0: Coefficient escapes shrinkage (relevant variable)

• κj ≈ 1: Coefficient shrunk to zero (irrelevant variable)

• κj ≈ 0.5: Boundary case (uncertain relevance)

fit_horseshoe 19

Effective Number of Non-Zero Coefficients

The model estimates m_eff, the effective number of non-zero coefficients:

meff = P −
P∑

j=1

κj

This provides a data-driven estimate of the true sparsity level.

Model Diagnostics

The function performs comprehensive MCMC diagnostics:

• Divergences: Indicate geometric problems; should be 0

• R-hat: Chain mixing; should be < 1.01

• ESS: Effective sample size; should be > 400

• BFMI: Bayesian fraction of missing information; should be > 0.3

References

Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. Electronic Journal of Statistics, 11(2), 5018-5051. doi:10.1214/17EJS1337SI

Piironen, J., & Vehtari, A. (2017). On the hyperprior choice for the global shrinkage parameter in
the horseshoe prior. Proceedings of Machine Learning Research, 54, 905-913.

Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals.
Biometrika, 97(2), 465-480.

See Also

select_by_shrinkage, signal_analysis

Examples

set.seed(123)
n <- 100
p <- 20
X <- matrix(rnorm(n * p), ncol = p)
beta_true <- c(rep(2, 3), rep(0, p - 3))
y <- X %*% beta_true + rnorm(n)
result <- fit_horseshoe(y, X, iter_warmup = 1000, iter_sampling = 1000)
print(result$coefficients)

https://doi.org/10.1214/17-EJS1337SI

20 pca_bootstrap

horseshoe Regularized Horseshoe Regression for Variable Selection

Description

Implements Bayesian sparse regression using the regularized Horseshoe prior for identifying struc-
turally relevant predictors from high-dimensional candidate variable sets.

iplot Interactive Plot for Signal Analysis

Description

Generates an interactive dashboard using plotly to explore the results of the signal analysis. Allows
zooming, panning, and toggling traces.

Usage

iplot(x)

Arguments

x An object of class signal_analysis

Value

A plotly object (HTML widget).

pca_bootstrap Principal Component Analysis with Bootstrap Significance Testing

Description

Performs PCA on panel data with bootstrap-based significance testing for factor loadings. Identifies
which variables load significantly on each principal component using a null distribution constructed
via block bootstrapping.

pca_bootstrap 21

Usage

pca_bootstrap(
X,
n_components = NULL,
center = TRUE,
scale = TRUE,
n_boot = 200,
block_length = NULL,
alpha = 0.05,
use_fdr = FALSE,
rotation = c("varimax", "none", "oblimin"),
verbose = FALSE

)

Arguments

X Matrix or data frame where rows are observations (time points) and columns are
variables.

n_components Number of principal components to extract. If NULL, determined by eigenvalue
threshold or explained variance.

center Logical. Center variables before PCA. Default TRUE.

scale Logical. Scale variables to unit variance. Default TRUE.

n_boot Number of bootstrap replications for significance testing. Default 200.

block_length Block length for block bootstrap. If NULL, defaults to ceiling(sqrt(nrow(X))).

alpha Significance level for loading tests. Default 0.05.

use_fdr Logical. Apply Benjamini-Hochberg FDR correction. Default FALSE.

rotation Character string specifying rotation method: "none", "varimax", or "oblimin".
Default "varimax".

verbose Logical for progress messages.

Details

The analysis proceeds in several stages:

1. Standard PCA: Eigendecomposition of the correlation (if scaled) or covariance matrix to extract
principal components.

2. Rotation (optional): Varimax rotation maximizes the variance of squared loadings within com-
ponents, producing cleaner simple structure. Oblimin allows correlated factors.

3. Bootstrap Significance Testing: For each bootstrap replicate:

1. Resample rows using block bootstrap (preserving temporal dependence)

2. Perform PCA on resampled data

3. Apply Procrustes rotation to align with original

4. Record absolute loadings

22 pca_bootstrap

The empirical p-value for each loading is the proportion of bootstrap loadings exceeding the original
in absolute value.

4. Entropy Calculation: Shannon entropy of squared loadings indicates whether explanatory
power is concentrated (low entropy) or diffuse (high entropy). High entropy on PC1 suggests sys-
temic co-movement rather than differentiated structure.

Value

A list of class "signaly_pca" containing:

loadings Matrix of factor loadings (rotated if specified)
scores Matrix of component scores
eigenvalues Vector of eigenvalues
variance_explained Proportion of variance explained by each component
cumulative_variance Cumulative proportion of variance explained
significant_loadings Matrix of logical values indicating significance
p_values Matrix of bootstrap p-values for loadings
thresholds Cutoff values for significance by component
entropy Shannon entropy of loadings for each component
summary_by_component Data frame summarizing each component
assignments Data frame mapping variables to their dominant component

Interpretation in Signal Analysis

• High PC1 entropy: "Maximum entropy systemic stochasticity" - the dominant factor captures
undifferentiated movement, suggesting noise rather than latent structure.

• Low PC1 entropy: "Differentiated latent structure" - specific variables dominate, indicating
meaningful groupings.

• Significant loadings: Variables with p < alpha after bootstrap testing reliably load on that
component.

References

Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika,
23(3), 187-200.

Examples

set.seed(123)
n <- 100
p <- 10
X <- matrix(rnorm(n * p), ncol = p)
colnames(X) <- paste0("V", 1:p)
result <- pca_bootstrap(X, n_components = 3, n_boot = 50)
print(result$summary_by_component)

pca_dfm 23

pca_dfm Principal Component Analysis and Dynamic Factor Models

Description

Implements dimensionality reduction techniques for panel data including PCA with bootstrap sig-
nificance testing and Dynamic Factor Models (DFM) for extracting common latent factors.

plot.signal_analysis Plot Method for signal_analysis Objects

Description

Generate diagnostic visualizations for signal analysis results.

Usage

S3 method for class 'signal_analysis'
plot(x, which = "all", ask = NULL, ...)

Arguments

x An object of class signal_analysis

which Character vector specifying which plots to create. Options: "all", "filters",
"horseshoe", "pca", "dfm", "unitroot". Default is "all".

ask Logical, whether to prompt before each plot (default: TRUE in interactive mode)

... Additional arguments passed to plotting functions

Value

Invisibly returns the input object

24 select_by_shrinkage

print.signal_analysis Print Method for signal_analysis Objects

Description

Print a concise summary of signal analysis results.

Usage

S3 method for class 'signal_analysis'
print(x, ...)

Arguments

x An object of class signal_analysis

... Additional arguments (ignored)

Value

Invisibly returns the input object

select_by_shrinkage Select Variables Based on Shrinkage

Description

Alternative variable selection method using shrinkage factors (kappa) directly. Does not require
projpred.

Usage

select_by_shrinkage(hs_fit, threshold = 0.5, verbose = FALSE)

Arguments

hs_fit Object returned by fit_horseshoe.

threshold Kappa threshold. Variables with kappa < threshold are considered relevant. De-
fault 0.5.

verbose Logical for messages.

Value

Character vector of selected variable names.

signal_analysis 25

signal_analysis Comprehensive Signal Analysis for Panel Data

Description

Master function that orchestrates the complete signal extraction pipeline, integrating spectral de-
composition (wavelets, EMD, HP-GC), Bayesian variable’ selection (regularized Horseshoe), di-
mensionality reduction (PCA, DFM), and stationarity testing into a unified analytical framework.

The function constructs a target signal Y from candidate variables X in panel data and applies multi-
ple complementary methodologies to extract the latent structure from phenomenological dynamics.

Usage

signal_analysis(
data,
y_formula,
time_var = NULL,
group_var = NULL,
methods = "all",
filter_config = list(),
horseshoe_config = list(),
pca_config = list(),
dfm_config = list(),
unitroot_tests = "all",
na_action = c("interpolate", "omit", "fail"),
standardize = TRUE,
first_difference = FALSE,
verbose = TRUE,
seed = NULL

)

Arguments

data A data.frame or matrix containing the panel data. For data.frames, time should
be in rows and variables in columns.

y_formula Formula specifying how to construct Y from X variables, or a character string
naming the pre-constructed Y column in data.

time_var Character string naming the time variable (optional, assumes rows are ordered
by time if NULL).

group_var Character string naming the group/panel variable for panel data (optional for
single time series).

methods Character vector specifying which methods to apply. Options: "wavelet",
"emd", "hpgc", "horseshoe", "pca", "dfm", "unitroot", or "all" (default).

filter_config List of configuration options for filtering methods:

wavelet_filter Wavelet filter type (default: "la8")

26 signal_analysis

wavelet_levels Which detail levels to combine (default: c(3,4))
emd_max_imf Maximum IMFs for EMD (default: 10)
hpgc_prior Prior configuration: "weak", "informative", "empirical" (default:

"weak")
hpgc_chains Number of MCMC chains (default: 4)
hpgc_iterations Total iterations per chain (default: 20000)

horseshoe_config

List of configuration for Horseshoe regression:

p0 Expected number of relevant predictors (default: NULL for auto)
chains Number of MCMC chains (default: 4)
iter_sampling Sampling iterations per chain (default: 2000)
iter_warmup Warmup iterations (default: 1000)
adapt_delta Target acceptance rate (default: 0.95)
use_qr Use QR decomposition (default: TRUE)
kappa_threshold Shrinkage threshold for selection (default: 0.5)

pca_config List of configuration for PCA:

n_components Number of components (default: NULL for auto)
rotation Rotation method: "none", "varimax", "oblimin" (default: "none")
n_boot Bootstrap replications (default: 1000)
block_length Block length for bootstrap (default: NULL for auto)
alpha Alpha for bootstrap tests (default: 0.05)

dfm_config List of configuration for Dynamic Factor Models:

r Number of factors (default: NULL for auto via IC)
max_factors Maximum factors to consider (default: 10)
p VAR lags for factor dynamics (default: 1)
ic Information criterion: "IC1", "IC2", "IC3" (default: "bai_ng_2")

unitroot_tests Character vector of unit root tests to apply. Options: "adf", "ers", "kpss",
"pp", or "all" (default).

na_action How to handle missing values: "interpolate", "omit", "fail" (default: "interpo-
late").

standardize Logical, whether to standardize variables before analysis (default: TRUE).
first_difference

Logical, whether to first-difference data (default: FALSE).

verbose Logical, whether to print progress messages (default: TRUE).

seed Random seed for reproducibility (default: NULL).

Details

Methodological Framework
The signal extraction pipeline distinguishes between latent structure (the underlying data-generating
process) and phenomenological dynamics (observed variability). This is achieved through:

1. Spectral Decomposition: Separates signal frequencies

signal_analysis 27

• Wavelets: Multi-resolution analysis via MODWT
• EMD: Data-adaptive decomposition into intrinsic modes
• HP-GC: Bayesian unobserved components (trend + cycle)

2. Sparse Regression: Identifies relevant predictors

• Regularized Horseshoe: Adaptive shrinkage with slab regularization
• Shrinkage factors (kappa) quantify predictor relevance

3. Dimensionality Reduction: Extracts common factors

• PCA: Static factor structure with bootstrap significance
• DFM: Dynamic factors with VAR transition dynamics

4. Stationarity Testing: Characterizes persistence properties

• Integrated battery of ADF, ERS, KPSS, PP tests
• Synthesized conclusion on stationarity type

Interpretation Framework
The automated interpretation assesses:

• Signal Smoothness: Variance of second differences

• Trend Persistence: Deterministic vs. stochastic via unit roots

• Information Topology: Entropy of PC1 loadings (concentrated vs. diffuse)

• Sparsity Ratio: Proportion of predictors shrunk to zero

• Factor Structure: Number of significant common factors

Value

An S3 object of class "signal_analysis" containing:

call The matched function call

data Processed input data

Y The constructed target signal

X The predictor matrix

filters Results from spectral decomposition methods

horseshoe Results from Bayesian variable selection

pca Results from PCA with bootstrap

dfm Results from Dynamic Factor Model

unitroot Results from unit root tests

interpretation Automated technical interpretation

config Configuration parameters used

References

Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. Electronic Journal of Statistics, 11(2), 5018-5051. doi:10.1214/17EJS1337SI

Bai, J., & Ng, S. (2002). Determining the Number of Factors in Approximate Factor Models.
Econometrica, 70(1), 191-221. doi:10.1111/14680262.00273

https://doi.org/10.1214/17-EJS1337SI
https://doi.org/10.1111/1468-0262.00273

28 signal_analysis

See Also

filter_wavelet, filter_emd, filter_hpgc, fit_horseshoe, pca_bootstrap, estimate_dfm,
test_unit_root

Examples

Generate example panel data
set.seed(42)
n_time <- 50
n_vars <- 10

Create correlated predictors with common factor structure
factors <- matrix(rnorm(n_time * 2), n_time, 2)
loadings <- matrix(runif(n_vars * 2, -1, 1), n_vars, 2)
X <- factors %*% t(loadings) + matrix(rnorm(n_time * n_vars, 0, 0.5), n_time, n_vars)
colnames(X) <- paste0("X", 1:n_vars)

True signal depends on only 3 predictors
true_beta <- c(rep(1, 3), rep(0, 7))
Y <- X %*% true_beta + rnorm(n_time, 0, 0.5)

Combine into data frame
data <- data.frame(Y = Y, X)

Run comprehensive analysis
We pass specific configs to make MCMC very fast just for the example
result <- signal_analysis(

data = data,
y_formula = "Y",
methods = "all",
verbose = TRUE,
Configuration for speed (CRAN policy < 5s preferred)
filter_config = list(

hpgc_chains = 1,
hpgc_iterations = 50,
hpgc_burnin = 10

),
horseshoe_config = list(

chains = 1,
iter_sampling = 50,
iter_warmup = 10

),
pca_config = list(

n_boot = 50
)

)

View interpretation
print(result)

Plot results
plot(result)

summary.signal_analysis 29

summary.signal_analysis

Summary Method for signal_analysis Objects

Description

Generate a detailed summary of signal analysis results.

Usage

S3 method for class 'signal_analysis'
summary(object, ...)

Arguments

object An object of class signal_analysis

... Additional arguments (ignored)

Value

A list containing detailed summaries (invisibly)

test_unit_root Comprehensive Unit Root Test Suite

Description

Applies multiple unit root and stationarity tests to a time series, providing an integrated assessment
of persistence properties. Implements Augmented Dickey-Fuller (ADF), Elliott-Rothenberg-Stock
(ERS), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Phillips-Perron tests.

Usage

test_unit_root(y, max_lags = NULL, significance_level = 0.05, verbose = FALSE)

Arguments

y Numeric vector of the time series to test.

max_lags Maximum number of lags for ADF-type tests. If NULL, defaults to floor(12
* (length(y)/100)^0.25).

significance_level

Significance level for hypothesis testing. Default is 0.05.

verbose Logical indicating whether to print detailed results.

30 test_unit_root

Details

The battery of tests addresses different null hypotheses and specifications:

Augmented Dickey-Fuller (ADF) tests the null of a unit root against the alternative of stationarity.
Three specifications are tested:

• none: No constant, no trend (random walk)

• drift: Constant included (random walk with drift)

• trend: Constant and linear trend

Elliott-Rothenberg-Stock (ERS) tests provide more power than ADF by using GLS detrending.
Two variants:

• DF-GLS: GLS-detrended Dickey-Fuller test

• P-test: Point-optimal test

KPSS reverses the hypotheses: null is stationarity, alternative is unit root. This allows testing the
stationarity hypothesis directly.

Phillips-Perron uses non-parametric corrections for serial correlation, avoiding lag selection issues.

Value

A list of class "signaly_unitroot" containing:

adf Results from ADF tests (none, drift, trend specifications)

ers Results from ERS tests (DF-GLS and P-test)

kpss Results from KPSS tests (level and trend)

pp Results from Phillips-Perron tests

summary Data frame summarizing all test results

conclusion Integrated conclusion about stationarity

persistence_type Classification: stationary, trend-stationary, difference-stationary, or inconclusive

Interpretation Strategy

The function synthesizes results using the following logic:

1. If ADF/ERS reject unit root AND KPSS fails to reject stationarity: Series is likely stationary

2. If ADF/ERS fail to reject AND KPSS rejects stationarity: Series likely has unit root (difference-
stationary)

3. If only trend-ADF rejects: Series is likely trend-stationary

4. Conflicting results indicate inconclusive or structural breaks

unit_root 31

References

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time
Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427-431.

Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit Root.
Econometrica, 64(4), 813-836.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of
stationarity against the alternative of a unit root. Journal of Econometrics, 54(1-3), 159-178.

Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika,
75(2), 335-346.

See Also

ur.df, ur.ers, ur.kpss, ur.pp

Examples

set.seed(123)
stationary <- arima.sim(list(ar = 0.5), n = 100)
result <- test_unit_root(stationary)
print(result$conclusion)

nonstationary <- cumsum(rnorm(100))
result2 <- test_unit_root(nonstationary)
print(result2$conclusion)

unit_root Unit Root and Stationarity Tests

Description

Comprehensive suite of unit root and stationarity tests for characterizing the persistence properties
of time series and extracted signals.

Index

∗ package
SignalY-package, 2

apply_to_columns, 5

compute_entropy, 6

emd, 11
estimate_dfm, 7, 28

filter_all, 9
filter_emd, 5, 10, 14, 16, 28
filter_hpgc, 5, 11, 12, 16, 28
filter_wavelet, 5, 11, 14, 14, 28
filters, 8
fit_horseshoe, 5, 16, 24, 28

horseshoe, 20

iplot, 20

mra, 16

pca_bootstrap, 20, 28
pca_dfm, 23
plot.signal_analysis, 23
print.signal_analysis, 24

select_by_shrinkage, 19, 24
signal_analysis, 5, 19, 25
SignalY (SignalY-package), 2
SignalY-package, 2
summary.signal_analysis, 29

test_unit_root, 28, 29

unit_root, 31
ur.df, 31
ur.ers, 31
ur.kpss, 31
ur.pp, 31

32

	SignalY-package
	apply_to_columns
	compute_entropy
	estimate_dfm
	filters
	filter_all
	filter_emd
	filter_hpgc
	filter_wavelet
	fit_horseshoe
	horseshoe
	iplot
	pca_bootstrap
	pca_dfm
	plot.signal_analysis
	print.signal_analysis
	select_by_shrinkage
	signal_analysis
	summary.signal_analysis
	test_unit_root
	unit_root
	Index

