## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) require(SMDIC) ## ----------------------------------------------------------------------------- #Flow diagram of SMDIC. knitr::include_graphics("../inst/workflow.jpg") ## ----echo = T, results = 'hide'----------------------------------------------- library(SMDIC) #get breast cancer gene expression profile. exp.example<-GetExampleData("exp.example") # perform the exp2cell method. The method must be one of "xCell","ssGSEA" and "CIBERSORT". cellmatrix.example<-exp2cell(exp.example,method="ssGSEA") ## ----------------------------------------------------------------------------- #get the result of the exp2cell function #view the first six rows and six columns of the cell abundance matrix. head(cellmatrix.example) ## ----------------------------------------------------------------------------- # get the path of the mutation annotation file. maf <- system.file("extdata","example.maf.gz",package = "SMDIC") # perform the maf2matrix method. mutmatrix.example<-maf2matrix(maffile = maf,percent = 0.01) #get the result of the exp2cell function #view the first six rows and six columns of the binary mutations matrix head(mutmatrix.example)[1:6,1:6] ## ----import, results = "hide"------------------------------------------------- # get breast cancer cell abundance matrix, which can be the result of exp2cell function. cellmatrix<-GetExampleData("cellmatrix") # get breast cancer binary mutations matrix, which can be the result of maf2matrix function. mutmatrix<-GetExampleData("mutmatrix") # perform the function `mutcorcell`. mutcell<-mutcorcell(cellmatrix= cellmatrix,mutmatrix = mutmatrix,fisher.adjust = TRUE) #get the result of the `mutcorcell` function mutcell<-GetExampleData("mutcell") # the binary numerical matrix which shows the immune cells driven by somatic mutant gene. mutcell$mut_cell[1:6,1:6] #the numerical matrix which shows the pvalue of the immune cells driven by a somatic mutant gene #mutcell$mut_cell_p #the numerical matrix which show the fdr of the immune cells driven by somatic mutant gene #mutcell$mut_cell_fdr #the character matrix which shows the cell responses of the immune cells driven by a somatic mutant gene."up" means up-regulation, "down" means down-regulation, and "0" means no significant adjustment relationship #mutcell$mut_cell_cellresponses ## ----echo=TRUE---------------------------------------------------------------- # perform the function mutcellsummary summary<-mutcellsummary(mutcell =mutcell,mutmatrix = mutmatrix,cellmatrix = cellmatrix) # get the result of the mutcellsummary function head(summary) ## ----------------------------------------------------------------------------- # perform the function gene2cellsummary gene2cellsummary(gene="TP53",method="xCell",mutcell = mutcell) ## ----fig.height=6, fig.width=8------------------------------------------------ # load dependent package. require(pheatmap) # plot significant up-regulation or down-regulation cells heat map specific for breast cancer heatmapcell(gene = "TP53",mutcell = mutcell,cellmatrix = cellmatrix,mutmatrix = mutmatrix) ## ----echo=TRUE---------------------------------------------------------------- #maf<-"dir" #tips: dir is the name of the mutation annotation file (MAF) format data. It must be an absolute path or the name relative to the current working directory. #plot the waterfall for mutation genes which drive immune cells #plotwaterfall(maffile = maf,mutcell.summary = summary,cellnumcuoff =4) #plot the co-occurrence and mutual exclusivity plots for mutation genes that drive immune cells. #plotCoocMutex(maffile = maf,mutcell.summary = summary,cellnumcuoff =4) #view the result of the plotwaterfall function knitr::include_graphics("../inst/plotwaterfall.jpeg") #view the result of the plotCoocMutex function knitr::include_graphics("../inst/plotCoocMutex.jpeg") ## ----------------------------------------------------------------------------- # get the result of `mutcorcell` function. mutcell<-GetExampleData("mutcell") # get the result of `exp2cell` function. cellmatrix<-GetExampleData("cellmatrix") #get the survival data, the first column is the sample name, the second column is the survival time, and the third is the survival event. surv<-GetExampleData("surv") #draw Kaplan–Meier survival curves survcell(gene ="TP53",mutcell=mutcell,cellmatrix=cellmatrix,surv=surv,palette = c("#E7B800", "#2E9FDF"))