Package 'SEset'

October 12, 2022

Type Package

Title Computing Statistically-Equivalent Path Models

Version 1.0.1

Author Oisín Ryan

Maintainer Oisín Ryan <o.ryan@uu.nl>

Description Tools to compute and analyze the set of statistically-equivalent (Gaussian, lin-

ear) path models which generate the input precision or (partial) correlation matrix.

This procedure is useful for understanding how statistical network models such as the Gaussian Graphical Model (GGM) perform as causal discovery tools.

The statistical-equivalence set of a given GGM expresses the uncer-

tainty we have about the sign, size and direction of directed relation-

ships based on the weights matrix of the GGM alone.

The derivation of the equivalence set and its use for understanding GGMs as causal discovery tools is described by Ryan, O., Bringmann, L.F., & Schuurman, N.K. (2022) <doi:10.31234/osf.io/ryg69>.

 ${\bf BugReports} \ {\tt https://github.com/ryanoisin/SEset}$

License GPL-3

Encoding UTF-8

LazyData true

Imports combinat, Matrix, Rdpack, stats

RdMacros Rdpack

RoxygenNote 7.1.1

Suggests qgraph

NeedsCompilation no

Repository CRAN

Date/Publication 2022-03-17 08:50:08 UTC

2 cov_to_path

R topics documented:

cov_to_path	2
find_parents	3
get_psi	3
network_to_path	4
network_to_SEset	5
order_gen	7
path_to_network	8
propcal	9
r2_distribution	10
reorder_mat	11
riskcor	12
SEset_to_network	13
	15

cov_to_path

Path model from covariance matrix with ordering

Description

Index

Helper function. Takes a covariance matrix and ordering and generates a lower-triangular weights matrix.

Usage

```
cov_to_path(sigma, ordering = NULL, digits = 2)
```

Arguments

digits

sigma input matrix, with rows and columns in desired topological ordering Must be an invertible square matrix

ordering character vector containing the dimension names of the input matrix in the desired ordering

the number of digits used to round the output

Value

lower triangular matrix containing regression weights of the path model. Element ij represents the effect of X_j on X_i

See Also

network_to_path

find_parents 3

find_parents	Return parent indices from a (weighted) DAG for a given child

Description

Return parent indices from a (weighted) DAG for a given child

Usage

```
find_parents(mat, child)
```

Arguments

mat $\text{An } p \times p \text{ weights or adjacency matrix}$ $\text{child} \qquad \text{Index giving the position of the child node}$

Value

a vector containing index numbers defining the parent nodes

References

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*.

See Also

r2_distribution

get_psi	Calculate residual-covariance matrix based on a path model and covariance matrix
get_psi	1

Description

Takes an ordered path model and corresponding variance-covariance matrix and computes the appropriate residual covariance matrix (psi)

Usage

```
get_psi(B, sigma, digits = 3)
```

Arguments

В	input $p \times p$ linear SEM weights matrix
sigma	variance-covariance matrix of the variables
digits	how many digits to round the result to

4 network_to_path

Value

a $p \times p$ residual variance-covariance matrix

network_to_path

Path model from ordered precision matrix

Description

Takes a precision matrix and generates a lower-triangular weights matrix.

Usage

```
network_to_path(omega, input_type = "precision", digits = 20)
```

Arguments

omega input matrix, with rows and columns in desired topological ordering Must be an

invertible square matrix

input_type specifies what type of matrix 'omega' is. default is "precision", other options

include a matrix of partial correlations ("parcor") or a covariance matrix "co-

variance"

digits desired rounding of the output matrix

Value

lower triangular matrix containing regression weights of the path model. Element ij represents the effect of X_i on X_i

References

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*.

Shojaie A, Michailidis G (2010). "Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs." *Biometrika*, **97**(3), 519–538.

Bollen KA (1989). Structural equations with latent variables. Oxford, England, John Wiley & Sons.

See Also

network_to_SEset

network_to_SEset 5

Examples

```
data(riskcor)
omega <- (qgraph::EBICglasso(riskcor, n = 69, returnAllResults = TRUE))$optwi
# qgraph method estimates a non-symmetric omega matrix, but uses forceSymmetric to create
# a symmetric matrix (see qgraph:::EBICglassoCore line 65)
omega <- as.matrix(Matrix::forceSymmetric(omega)) # returns the precision matrix

B <- network_to_path(omega, digits=2)

# Path model can be plotted as a weighted DAG
pos <- matrix(c(2,0,-2,-1,-2,1,0,2,0.5,0,0,-2),6,2,byrow=TRUE)

# qgraph reads matrix elements as "from row to column"
# regression weights matrices are read "from column to row"
# path model weights matrix must be transposed for qgraph
qgraph::qgraph(t(B), labels=rownames(riskcor), layout=pos,
repulsion=.8, vsize=c(10,15), theme="colorblind", fade=FALSE)</pre>
```

network_to_SEset

SE-set from precision matrix

Description

Takes a precision matrix and generates the SE-set, a set of statistically equivalent path models. Unless otherwise specified, the SEset will contain one weights matrix for every possible topological ordering of the input precision matrix

Usage

```
network_to_SEset(
  omega,
  orderings = NULL,
  digits = 20,
  rm_duplicates = FALSE,
  input_type = "precision"
)
```

Arguments

omega input $p \times p$ precision matrix

orderings An optional matrix of n orderings from which to generate the SE-set. Must be

in the form of a $p \times n$ matrix with each column a vector of dimension names in

the desired order. If unspecified, all p! possible orderings are used

digits desired rounding of the output weights matrices in the SE-set, in decimal places.

Defaults to 20.

 6 network_to_SEset

input_type

specifies what type of matrix 'omega' is. default is "precision", other options include a matrix of partial correlations ("parcor") or a model implied covariance or correlation matrix "MIcov"

Value

a $p! \times p$ matrix containing the SE-set (or $n \times p$ matrix if a custom set of n orderings is specified). Each row represents a lower-triangular weights matrix, stacked column-wise.

References

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*.

Shojaie A, Michailidis G (2010). "Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs." *Biometrika*, **97**(3), 519–538.

Bollen KA (1989). Structural equations with latent variables. Oxford, England, John Wiley & Sons.

See Also

```
network_to_path, reorder_mat, order_gen
```

```
# first estimate the precision matrix
data(riskcor)
omega <- (qgraph::EBICglasso(riskcor, n = 69, returnAllResults = TRUE))$optwi
# ggraph method estimates a non-symmetric omega matrix, but uses forceSymmetric to create
# a symmetric matrix (see qgraph:::EBICglassoCore line 65)
omega <- as.matrix(Matrix::forceSymmetric(omega)) # returns the precision matrix</pre>
SE <- network_to_SEset(omega, digits=3)</pre>
# each row of SE defines a path-model weights matrix.
# We can extract element 20 by writing it to a matrix
example <- matrix(SE[20,],6,6)</pre>
# Example path model can be plotted as a weighted DAG
pos <- matrix(c(2,0,-2,-1,-2,1,0,2,0.5,0,0,-2),6,2,byrow=TRUE)
# qgraph reads matrix elements as "from row to column"
# regression weights matrices are read "from column to row"
# path model weights matrix must be transposed for qgraph
qgraph::qgraph(t(example), labels=rownames(riskcor), layout=pos,
repulsion=.8, vsize=c(10,15), theme="colorblind", fade=FALSE)
```

order_gen 7

order_gen

Generate all topological orderings

Description

Takes a matrix and generates a matrix containing all orderings of the rows and columns

Usage

```
order_gen(omega)
```

Arguments

omega

input p-dimensional square matrix

Value

a $p \times p!$ matrix of dimension orderings. Each column represents an ordering of dimension names as character strings.

References

Chasalow S (2012). combinate combinatorics utilities. R package version 0.0-8, https://CRAN.R-project.org/package=combinat.

See Also

```
reorder_mat, network_to_SEset
```

```
data(riskcor)
orderings <- order_gen(riskcor)

# Each column of orderings defines an ordering of variables
print(orderings[,1])
# in the second element, the fifth and sixth variable are switched
print(orderings[,2])</pre>
```

8 path_to_network

path	to	network

Precision matrix from ordered path model

Description

Takes a path model and generates the corresponding (standardized) precision matrix or covariance matrix. The inverse of network_to_path.

Usage

```
path_to_network(B, psi = NULL, output = "precision")
```

Arguments

В	input $p \times p$	o weights	matrix

psi variance-covariance matrix for the residuals. If NULL (the default) will impose

the constraint that the variables have variance 1 and the residuals are uncorre-

lated

output Function returns the precision ("precision") or covariance ("covariance") matrix

Value

```
a p \times p precision or covariance matrix
```

References

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*.

Shojaie A, Michailidis G (2010). "Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs." *Biometrika*, **97**(3), 519–538.

Bollen KA (1989). Structural equations with latent variables. Oxford, England, John Wiley & Sons.

See Also

```
network_to_path, SEset_to_network
```

propcal 9

propcal	Edge frequency in the SE-set	

Description

A function used to analyse the SEset results. Calculates the proportion of path models in a given SEset in which a particular edge is present

Usage

```
propcal(SEmatrix, names = NULL, rm_duplicate = TRUE, directed = TRUE)
```

Arguments

SEmatrix	An $n \times p$ matrix containing the SEset, where each row represents	$n \times n$ weights
OLING CI IX	This is it is a primarial containing the Beset, where each fow represents	A P A P TO LIGHT

matrix stacked column-wise

names optional character vector containing dimension names

rm_duplicate Should duplicate weights matrices be removed from the SEset. Defaults to

TRUE.

directed If FALSE, the directionality of edges is ignored, and the output reflects in what

proportion of the SEset an edge of any direction is present. If TRUE, the proportion is calculated seperately for edges of either direction. Defaults to TRUE

Value

a $p \times p$ matrix showing in what proportion particular edges are present. If directed=TRUE, elements ij denote the proportion of weights matrices containing a path from X_j to X_i . If directed=F, the output will be a symmetric matrix, with element ij denoting in what proprtion an edge of either direction connects X_i to X_j .

References

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*.

See Also

```
network_to_SEset
```

10 r2_distribution

r2_distribution	Compute Controllability Distribution in the SE-set	
-----------------	--	--

Description

A function used to analyse the SEset results. For each member of the SE-set, calculate the proportion of explained variance in each child node, when predicted by all of its parent nodes

Usage

```
r2_distribution(SEmatrix, cormat, names = NULL, indices = NULL)
```

Arguments

SEmatrix	An $n\times p$ matrix containing the SEset, where each row represents a $p\times p$ weights matrix stacked column-wise
cormat	A $p \times p$ matrix containing the marginal covariances or correlations
names	optional character vector containing dimension names
indices	option vector of matrix indices, indicating which variables to compute the R^2

Returns an $n \times p$ matrix of R^2 values. For each member of the SE-set, this represents the variance explained in node X_i by it's parents in that weighted DAG.

References

Value

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*. Haslbeck JM, Waldorp LJ (2018). "How well do network models predict observations? On the importance of predictability in network models." *Behavior Research Methods*, **50**(2), 853–861.

See Also

```
network_to_SEset, find_parents
```

distribution for

```
# first estimate the precision matrix
data(riskcor)
omega <- (qgraph::EBICglasso(riskcor, n = 69, returnAllResults = TRUE))$optwi
# qgraph method estimates a non-symmetric omega matrix, but uses forceSymmetric to create
# a symmetric matrix (see qgraph:::EBICglassoCore line 65)
omega <- as.matrix(Matrix::forceSymmetric(omega)) # returns the precision matrix
SEmatrix <- network_to_SEset(omega, digits=3)</pre>
```

reorder_mat 11

```
r2set <- r2_distribution(SEmatrix, cormat = riskcor, names = NULL, indices = c(1,3,4,5,6))
# Plot results
apply(r2set,2,hist)
# For ggplot format, execute
# r2set <- tidyr::gather(r2set)</pre>
```

reorder_mat

Re-order rows and columns

Description

Takes a matrix and re-orders the rows and columns to some target ordering

Usage

```
reorder_mat(matrix, names)
```

Arguments

matrix input matrix to be re-arranged. Must have rows and columns named

names character vector containing the dimension names of the input matrix in the de-

sired ordering

Value

input matrix with rows and columns sorted according to names

See Also

```
order_gen, network_to_SEset
```

```
data(riskcor)
# first define an ordered vector of names
row_names <- rownames(riskcor)
row_names_new <- row_names[c(1,2,3,4,6,5)]
reorder_mat(riskcor,row_names_new)
# The fifth and sixth row and column have been switched
print(riskcor)</pre>
```

12 riskcor

riskcor

Cognitive risk sample correlation matrix

Description

Reported sample correlation matrix from a cross-sectional study on cognitive risk and resilience factors in remitted depression patients, from Hoorelebeke, Marchetti, DE Schryver and Koster (2016). The study was conducted with 69 participants, and the correlation matrix consists of six variables. The variables are as follows:

Usage

```
data(riskcor)
```

Format

A 6 by 6 correlation matrix

Details

* 'BRIEF_WM': working memory complaints, a self-report measure of perceived cognitive control * 'PASAT_ACC': PASAT accuracy, performance on behavioural measure of congitive control * 'Adapt ER': self-report adaptive emotion regulation strategies * 'Maladapt ER': self-report maladaptive emotion regulation strategies * 'Resilience': self-report resilience * 'Resid Depress': self-report residual depressive symptoms

Source

https://ars.els-cdn.com/content/image/1-s2.0-S0165032715313252-mmc1.pdf

References

Hoorelbeke K, Marchetti I, De Schryver M, Koster EH (2016). "The interplay between cognitive risk and resilience factors in remitted depression: a network analysis." *Journal of Affective Disorders*, **195**, 96–104.

```
data(riskcor)
print(rownames(riskcor))
print(riskcor)
```

SEset_to_network 13

SEset_to_network

Precision matrices from the SEset

Description

Takes the SE-set and calculates for each weights matrix the corresponding precision matrix. Used to check the results of network_to_SEset to assess deviations from statistical equivalence induced due to rounding, thresholding, and numerical approximations.

Usage

```
SEset_to_network(
   SEmatrix,
   order.ref = NULL,
   order.mat = NULL,
   output = "raw",
   omega = NULL
)
```

Arguments

SEmatrix	a $n \times p$ matrix containing the SE-set. The output of <code>network_to_SEset</code>
order.ref	an optional character vector with variable names, the reference ordering of the precision matrix.
order.mat	a $n \times p$ matrix of character strings, defining the ordering of the matrix corresponding to each row of SEmatrix. If NULL it is assumed that all orderings are included and they are generated using order_gen
output	Output as "raw" or "summary". See value below
omega	Comparision precision matrix, e.g. original input precision matrix to network_to_SEset. Only necessary if output = "summary"

Value

If output = "raw", a $n \times p$ matrix of precision matrices stacked column-wise in n rows. If output = "summary" returns a list containing the bias, MSE and RMSE for each re-calculated precision matrix, relative to comparison omega matrix supplied.

References

Ryan O, Bringmann LF, Schuurman NK (upcoming). "The challenge of generating causal hypotheses using network models." *in preperation*.

Shojaie A, Michailidis G (2010). "Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs." *Biometrika*, **97**(3), 519–538.

Bollen KA (1989). Structural equations with latent variables. Oxford, England, John Wiley & Sons.

SEset_to_network

See Also

 ${\tt network_to_path,path_to_network}$

Index

```
* datasets
riskcor, 12

cov_to_path, 2

find_parents, 3, 10

get_psi, 3

network_to_path, 2, 4, 6, 8, 14
network_to_SEset, 4, 5, 7, 9–11, 13

order_gen, 6, 7, 11, 13

path_to_network, 8, 14
propcal, 9

r2_distribution, 3, 10
reorder_mat, 6, 7, 11
riskcor, 12

SEset_to_network, 8, 13
```