
Package ‘SAiVE’
April 22, 2024

Type Package

Title Functions Used for SAiVE Group Research, Collaborations, and
Publications

Version 1.0.5

Date/Publication 2024-04-22 08:22:53 UTC

Description Holds functions developed by the University of Ottawa's SAiVE
(Spatio-temporal Analysis of isotope Variations in the Environment)
research group with the intention of facilitating the re-use of code,
foster good code writing practices, and to allow others to benefit
from the work done by the SAiVE group. Contributions are welcome via
the 'GitHub' repository <https:
//github.com/UO-SAiVE/SAiVE> by group members as well as non-members.

License MIT + file LICENSE

URL https://github.com/UO-SAiVE/SAiVE

BugReports https://github.com/UO-SAiVE/SAiVE/issues

Depends R (>= 4.2)

Imports caret, crayon, doParallel, parallel, proxy, rlang, stats,
terra, utils, VSURF

Suggests ranger, testthat (>= 3.0.0), vdiffr, whitebox

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Ghislain de Laplante [aut, cre, cph]
(<https://orcid.org/0000-0002-5093-9185>)

Maintainer Ghislain de Laplante <ghislain.delaplante@yukon.ca>

Repository CRAN

1

https://github.com/UO-SAiVE/SAiVE
https://github.com/UO-SAiVE/SAiVE
https://github.com/UO-SAiVE/SAiVE
https://github.com/UO-SAiVE/SAiVE/issues
https://orcid.org/0000-0002-5093-9185

2 aspect

R topics documented:

aspect . 2
basin_dem . 3
basin_pts . 3
createStreams . 4
drainageBasins . 5
elev . 8
hydroProcess . 9
modelMatch . 11
permafrost . 12
permafrost_polygons . 12
slope . 13
solrad . 13
spatPredict . 14
streams . 18
thinFeatures . 18
veg . 19
wbtCheck . 20

Index 21

aspect Raster of aspect

Description

Raster of aspect

Usage

aspect

Format

aspect:
A tif file loaded as a terra spatRaster

Source

Derived from the Canadian Digital Elevation Model DEM

https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333

basin_dem 3

basin_dem Raster of elevation for basin delineation testing

Description

Raster of elevation for basin delineation testing

Usage

basin_dem

Format

basin_dem:
A tif file loaded as a terra spatRaster

Source

Small subset of the Canadian Digital Elevation Model DEM

basin_pts Points for basin delineation

Description

Points for basin delineation

Usage

basin_pts

Format

basin_pts:
A geopackage file loaded as a terra spatVector

Source

Created by package developer in ArcGIS Pro

https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333

4 createStreams

createStreams Create stream network from DEM

Description

[Stable]
Creates a stream network from a provided DEM. In most cases it is advisable to first hydro-process
the DEM (see hydroProcess()) to remove depressions which preclude continuous flow from one
DEM cell to the next.

Usage

createStreams(
DEM,
threshold,
vector = NULL,
save_path = NULL,
force_update_wbt = FALSE,
n.cores = NULL

)

Arguments

DEM The path to a digital elevation model file with .tif extension, or a terra spatRaster
object. It is usually advisable to have already hydro-processed the DEM to
remove artificial depressions. See hydroProcess().

threshold The accumulation threshold in DEM cells necessary to start defining a stream.
vector Output file specifications. NULL for no vector file saved to disk, "gpkg" for a

geopackage file, "shp" for a shapefile.
save_path An optional path in which to save the newly created stream network. If left

NULL will save it in the same directory as the provided DEM or, if the DEM is
a terra object, return only terra objects.

force_update_wbt

Whitebox Tools is by default only downloaded if it cannot be found on the com-
puter, and no check are performed to ensure the local version is current. Set to
TRUE if you know that there is a new version and you would like to use it.

n.cores The maximum number of cores to use. Leave NULL to use all cores minus 1.

Details

This function is essentially a convenient wrapper around three WhiteboxTools geospatial tools:
whitebox::wbt_d8_flow_accumulation(), whitebox::wbt_d8_pointer(), and whitebox::wbt_extract_streams()

Value

A raster representation of streams and, if requested, a vector representation of streams. Returned as
terra objects and saved to disk if save_path is not null.

drainageBasins 5

Author(s)

Ghislain de Laplante (gdela069@uottawa.ca or ghislain.delaplante@yukon.ca)

Examples

hydroDEM <- hydroProcess(elev, 200, streams, n.cores = 2)
res <- createStreams(hydroDEM, 50, n.cores = 2)

terra::plot(res$streams_derived)

drainageBasins Watershed/basin delineation

Description

[Stable]

Hydro-processes a DEM, creating flow accumulation, direction, and streams rasters, and (option-
ally) delineates watersheds above one or more points using Whitebox Tools. To facilitate this task
in areas with poor quality/low resolution DEMs, can "burn-in" a stream network to the DEM to en-
sure proper stream placement (see details). Many time-consuming raster operations are performed,
so the function will attempt to use existing rasters if they are present in the same path as the base
DEM and named according to the function’s naming conventions. In practice, this means that only
the first run of the function needs to be very time consuming. See details for more information.

NOTE 1: This tool can be slow to execute, and will use a lot of memory. Be patient, it might take
several hours with a large DEM.

NOTE 2: ESRI shapefiles, on which the Whitebox Tools functions depend, truncate column names
to 10 characters. You may want to save and re-assign column names to the output terra object after
this function has run.

NOTE 3: If you are have already run this tool and are using a DEM in the same directory as
last time, you only need to specify the DEM and the points (and, optionally, a projection for the
points output). Operations using the optional streams shapefile and generating flow accumulation
direction, and the artificial streams raster do not need to be repeated unless you want to use a
different DEM or streams shapefile.

NOTE 4: This function is very memory (RAM) intensive. You’ll want at least 16GB of RAM,
and to ensure that most of it is free. If you get an error such as ’cannot allocate xxxxx bytes’, you
probably don’t have the resources to run the tool. All rasters are un-compressed and converted to
64-bit float type before starting work, and there needs to be room to store more than twice that
uncompressed raster size in memory.

https://www.whiteboxgeo.com/

6 drainageBasins

Usage

drainageBasins(
save_path,
DEM,
streams = NULL,
breach_dist = 10000,
threshold = 500,
overwrite = FALSE,
points = NULL,
points_name_col = NULL,
projection = NULL,
snap = "nearest",
snap_dist = 200,
force_update_wbt = FALSE,
n.cores = NULL

)

Arguments

save_path The directory where you want the output shapefiles saved.

DEM The path to a DEM including extension from which to delineate watersheds/catchments.
Must be in .tif format. Derived layers such as flow accumulation, flow direction,
and streams will inherit the DEM coordinate reference system.

streams Optionally, the path to the polylines shapefile/geopackage containing lines, which
can be used to improve accuracy when using poor quality DEMs. If this shape-
file is the only input parameter being modified from previous runs (i.e. you’ve
found a new/better streams shapefile but the DEM is unchanged) then specify a
shapefile or geopackage lines file here and overwrite = TRUE.

breach_dist The max radius (in raster cells) for which to search for a path to breach depres-
sions, passed to whitebox::wbt_breach_depressions_least_cost(). This
value should be high to ensure all depressions are breached. Note that the DEM
is not breached in order of lowest elevation to greatest, nor is it breached se-
quentially (order is unknown, but the raster is presumably searched in some grid
pattern for depressions). This means that flow paths may need to cross multiple
depressions, especially in low relief areas.

threshold The accumulation threshold in DEM cells necessary to start defining a stream.
This streams raster is necessary to snap pout points to, so make sure not to make
this number too great!

overwrite If applicable, should rasters present in the same directory as the DEM be over-
written? This will also force the recalculation of derived layers.

points The path to the points shapefile (extension .shp) containing the points from
which to build watersheds. The attribute of each point will be attached to the
newly-created drainage polygons. Leave NULL (along with related parameters)
to only process the DEM without defining watersheds.

points_name_col

The name of the column in the points shapefile containing names to assign to the

drainageBasins 7

watersheds. Duplicates are allowed, and are labelled with the suffix _duplicate
and a number for duplicates 2+.

projection Optionally, a projection string in the form "epsg:3579" (find them here). The
derived watersheds and point output layers will use this projection. If NULL the
projection of the points will be used.

snap Snap to the "nearest" derived (calculated) stream, or to the "greatest" flow ac-
cumulation cell within the snap distance? Beware that "greatest" will move the
point downstream by up to the ’snap_dist’ specified, while nearest might snap
to the wrong stream.

snap_dist The search radius within which to snap points to streams. Snapping method
depends on ’snap’ parameter. Note that distance units will match the projection,
so probably best to work on a meter grid.

force_update_wbt

Whitebox Tools is by default only downloaded if it cannot be found on the com-
puter, and no check are performed to ensure the local version is current. Set to
TRUE if you know that there is a new version and you would like to use it.

n.cores The maximum number of cores to use. Leave NULL to use all cores minus 1.

Details

This function uses software from the Whitebox geospatial analysis package, built by Prof. John
Lindsay. Refer to this link for more information.

Creating derived raster layers without defining watersheds:
This function can be run without having any specific point above which to define a watershed.
This can come in handy if you need to know where the synthetic streams raster will end up to
ensure that your defined watershed pour points do not end up on the wrong stream branch, or if
you simply want to front-load work while you work on defining the watershed pour points. To do
this, leave the parameter ’points’ and associated parameters as NULL.

Explanation of process::
Starting from a supplied DEM, the function will fill single-cell pits, burn-in a stream network
depression if requested (ensuring that flow accumulations happen in the correct location), breach
depressions in the digital elevation model using a least-cost algorithm (i.e. using the pathway
resulting in minimal changes to the DEM considering distance and elevation) then calculate flow
accumulation and direction rasters. Then, a raster of streams is created where flow accumulation
is greatest. The points provided by the user are then snapped to the derived streams raster and
watersheds are computed using the flow direction rasters. Finally, the watershed/drainage basin
polygons are saved to the specified save path along with the provided points and the snapped pour
points.

Using a streams shapefile to burn-in depressions to the DEM::
Be aware that this part of the function should ideally be used with a "simplified" streams shape-
file. In particular, avoid or pre-process stream shapefiles that represent side-channels, as these
will burn-in several parallel tracks to the DEM. ESRI has a tool called "simplify hydrology lines"
which is great if you can ever get it to work, and WhiteboxTools has functions whitebox::wbt_remove_short_streams()
to trim the streams raster, and whitebox::wbt_repair_stream_vector_topology() to help in
converting a corrected streams vector to raster in the first place.

https://epsg.io/
https://www.whiteboxgeo.com/manual/wbt_book/intro.html

8 elev

Value

A list of terra objects. If points are specified: delineated drainages, pour points as provided, snapped
pour points, and the derived streams network. If no points: flow accumulation and direction rasters,
and the derived streams network. If points specified, also saved to disk: an ESRI shapefile for each
drainage basin, plus the associated snapped pour point and the point as provided and a shapefiles
for all basins/points together. In all cases the created or discovered rasters will be in the same folder
as the DEM.

Author(s)

Ghislain de Laplante (gdela069@uottawa.ca or ghislain.delaplante@yukon.ca)

Examples

Must be run with file paths as well as a save_path

Interim raster are created in the same path as the DEM

file.copy(system.file("extdata/basin_rast.tif", package = "SAiVE"),
paste0(tempdir(), "/basin_rast.tif"))

basins <- drainageBasins(save_path = tempdir(),
DEM = paste0(tempdir(), "/basin_rast.tif"),
streams = system.file("extdata/streams.gpkg", package = "SAiVE"),
points = system.file("extdata/basin_pts.gpkg", package = "SAiVE"),
points_name_col = "ID",
breach_dist = 500,
n.cores = 2)

terra::plot(basins$delineated_basins)

elev Raster of elevation

Description

Raster of elevation

Usage

elev

hydroProcess 9

Format

elev:
A tif file loaded as a terra spatRaster

Source

Small subset of the Canadian Digital Elevation Model DEM

hydroProcess Hydro-process a DEM

Description

[Stable]
Takes a digital elevation model and prepares it for hydrological analyses, such as basin delineation.
Modifies the input DEM by breaching single cell pits/depressions and then breaching remaining
depressions using a least cost algorithm (where cost is a function of distance plus elevation change
to the DEM).

If a streams layer is specified, a depression will be "burned-in" to the DEM along the stream path
(after converting the vector file to a raster). This is very useful when trying to delineate basins with
a poor resolution DEM. You can control the depth of this depression with parameter ’burn_dist’.

Usage

hydroProcess(
DEM,
breach_dist,
streams = NULL,
burn_dist = 10,
save_path = NULL,
n.cores = NULL,
force_update_wbt = FALSE

)

Arguments

DEM The path to a digital elevation raster file with .tif extension, or a terra spatRaster
object.

breach_dist The max radius (in raster cells) in which to search for a path to breach depres-
sions, passed to whitebox::wbt_breach_depressions_least_cost(). This
value should be high to ensure all depressions are breached, keeping in mind that
greater distance = greater computing time. Note that the DEM is not breached
in order of lowest elevation to greatest, nor is it breached sequentially (order
is unknown, but the raster is presumably searched in some grid pattern for de-
pressions). This means that flow paths may need to cross multiple depressions,
especially in low relief areas.

https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333

10 hydroProcess

streams Optionally, the path to the polylines shapefile or geopackage file containing
streams, which can be used to improve hydrological accuracy when using poor
quality DEMs but decent accuracy stream networks.

burn_dist The number of units (in DEM units) to use for burning-in the stream network.

save_path An optional path in which to save the processed DEM. If left NULL will save
it in the same directory as the provided DEM or, if the DEM is a terra object,
return only terra objects.

n.cores The maximum number of cores to use. Leave NULL to use all cores minus 1.
force_update_wbt

Whitebox Tools is by default only downloaded if it cannot be found on the com-
puter, and no check are performed to ensure the local version is current. Set to
TRUE if you know that there is a new version and you would like to use it.

Details

Relies on two WhiteboxTools functions: whitebox::wbt_fill_single_cell_pits() and whitebox::wbt_breach_depressions_least_cost().
If the parameter streams is specified, a depression is burned into the DEM after running fill_single_cell_pits
and before breaching depressions.

Value

A hydro-processed DEM returned as a terra object and saved to disk if save_path is not null.

Author(s)

Ghislain de Laplante (gdela069@uottawa.ca or ghislain.delaplante@yukon.ca)

Examples

Running with terra objects:
res <- hydroProcess(DEM = elev,

breach_dist = 500,
streams = streams,
n.cores = 2)

terra::plot(res)

Running with file paths:
res <- hydroProcess(DEM = system.file("extdata/dem.tif", package = "SAiVE"),

breach_dist = 500,
streams = system.file("extdata/streams.gpkg", package = "SAiVE"),
n.cores = 2)

terra::plot(res)

modelMatch 11

modelMatch Find machine learning models for use in caret

Description

[Experimental]
As of 2023-06-15, there are 238 different machine learning models which can be used with the
CARET package. As evaluating model performance is time consuming, selecting a subset of models
to test prior to deciding on which model to use is essential. This function aims to facilitate this
process by matching models according to their Jaccard similarity, in a process inspired by this
section in the CARET e-book. Model data is fetched from here. The result of this function can then
be passed to spatPredict() to further refine model selection.

Usage

modelMatch(model, type = "match", similarity = 0.7)

Arguments

model The abbreviation or short name of the model you’d like to match, taken from
here.

type The type of model. You can match the input model type with "match", or select
from dual-purpose models ("dual"), regression models only ("regression"), or
classification models only ("classification").

similarity The similarity threshold to use as a numeric value from 0 to 1. Models with a
similarity score greater than this will be returned.

Details

This function requires internet access to get an up-to-date list of models.

Value

A data.frame of models meeting the requested similarity threshold along with the model abbrevia-
tions that can be passed to caret::train() or to function spatPredict().

Author(s)

Ghislain de Laplante (gdela069@uottawa.ca or ghislain.delaplante@yukon.ca)

Examples

Find models similar to 'ranger'
modelMatch("ranger")

Find only models with a similarity > 0.8 to 'ranger'

https://topepo.github.io/caret/models-clustered-by-tag-similarity.html
https://topepo.github.io/caret/models-clustered-by-tag-similarity.html
https://topepo.github.io/caret/tag_data.csv
https://topepo.github.io/caret/available-models.html

12 permafrost_polygons

modelMatch("ranger", similarity = 0.8)

permafrost Permafrost data

Description

A small data set of permafrost type with correlated terrain attributes

Usage

permafrost

Format

permafrost:
A data frame with 400 rows and 8 columns

Source

Permafrost type classification from central Yukon, with corresponding values derived from the
Canadian Digital Elevation Model.

permafrost_polygons Polygons of permafrost occurrence and type

Description

Polygons of permafrost occurrence and type

Usage

permafrost_polygons

Format

permafrost_polygons:
A geopackage file loaded as a terra spatVector.

Source

Permafrost classification polygons created from ground observations and geophysics in central
Yukon.

slope 13

slope Raster of slope angle

Description

Raster of slope angle

Usage

slope

Format

slope:
A tif file loaded as a terra spatRaster

Source

Derived from the Canadian Digital Elevation Model DEM

solrad Raster of solar radiation

Description

Raster of solar radiation

Usage

solrad

Format

solrad:
A tif file loaded as a terra spatRaster

Source

Derived from the Canadian Digital Elevation Model DEM using the ArcGIS Area Solar Radiation
tool

https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333
https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/area-solar-radiation.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/area-solar-radiation.htm

14 spatPredict

spatPredict Predict spatial variables using machine learning

Description

[Stable]
Function to facilitate the prediction of spatial variables using machine learning, including the selec-
tion of a particular model and/or model parameters from several user-defined options. Both classi-
fication and regression is supported, though please ensure that the models passed to the parameter
methods are suitable.

Note that you may need to acquiesce to installing supplementary packages, depending on the model
types chosen and whether or not these have been run before; this function may not be ’set and
forget’.

It is possible to specify multiple machine learning methods (the methods parameter) as well as
method-specific parameters (the trainControl parameter) if you wish to test multiple options and
select the best one. To facilitate method selection, refer to function modelMatch(). If you are unsure
of the best model to use, you can use the fastCompare parameter to quickly compare models and
select the best one based on accuracy. If you wish to use a single model and/or trainControl object,
you can pass a single string to methods and a single trainControl object to trainControl.

Warning options are changed for this function only to show all warnings as they occur and reset
back to their original state upon function completion (a test is done first to ensure it can be reset).
This is to ensure that any warnings when running models are shown in sequence with the messages
indicating the progress of the function, especially when running multiple models and/or trainControl
options.

Usage

spatPredict(
features,
outcome,
poly_sample = 1000,
trainControl,
methods,
fastCompare = TRUE,
fastFraction = NULL,
thinFeatures = TRUE,
predict = FALSE,
n.cores = NULL,
save_path = NULL

)

Arguments

features Independent variables. Must be either a NAMED list of terra spatRasters or a
multi-layer (stacked) spatRaster (c(rast1, rast2). All layers must all have the
same cell size, alignment, extent, and crs. These rasters should include the

spatPredict 15

training extent (that covered by the spatVector in outcome) as well as the desired
extrapolation extent.

outcome Dependent variable, as a terra spatVector of points or polygons with a single
attribute table column (of class integer, numeric or factor). The class of this col-
umn dictates whether the problem is approached as a classification or regression
problem; see details. If specifying polygons, stratified random sampling will be
done with poly_sample number of points per unique polygon value.

poly_sample If passing a polygon SpatVector to outcome, the number of points to generate
from the polygons for each unique polygon value.

trainControl Parameters used to control training of the machine learning model, created with
caret::trainControl(). Passed to the trControl parameter of caret::train().
If specifying multiple methods in methods you can use a single trainControl
which will apply to all methods, or pass multiple variations to this argument as
a list with names matching the names of methods (one element for each model
specified in methods).

methods A string specifying one or more classification/regression methods(s) to use.
Passed to the method parameter of caret::train(). If specifying more than
one method they will all be passed to caret::resamples() to compare method
performance. Then, if predict = TRUE, the method with the highest overall ac-
curacy will be selected to predict the raster surface across the exent of features.
A different trainControl parameter can be used for each method in methods.

fastCompare If specifying multiple methods in methods or one method with multiple trainControl
objects, should the points in outcome be sub-sampled for the comparison step?
The selected method will be trained on the full outcome data set after selection.
This only applies if methods is length > 3, with behavior further modified by
fastFraction.

fastFraction The fraction of points to use for the method comparison step (final training and
testing is always done on the full data set) if fastCompare is TRUE and multiple
methods . Default NULL ranges from 1 for 5000 or fewer points to 0.1 for 50
000 or more points. You can also set this to any value between 0 and 1 to
override this behavior.

thinFeatures Should random forest selection using VSURF::VSURF() be used in an attempt to
remove irrelevant variables?

predict TRUE will apply the trained model to the full extent of features and return a
raster saved to save_path.

n.cores The maximum number of cores to use. Leave NULL to use all cores minus 1.

save_path The path (folder) to which you wish to save the predicted raster. Not used unless
predict = TRUE.

Details

This function partly operates as a convenient means of passing various parameters to the caret::train()
function, enabling the user to rapidly trial different model types and parameter sets. In addition,
pre-processing of data can optionally be done using VSURF::VSURF() (parameter thinFeatures)
which can decrease the time to run models by removing superfluous parameters.

16 spatPredict

Value

If passing only one method to the method argument: the outcome of the VSURF variable selection
process (if thinFeatures is TRUE), the training and testing data.frames, the fitted model, model
performance statistics, and the final predicted raster (if predict = TRUE).

If passing multiple methods to the method argument: the outcome of the VSURF variable selection
process (if thinFeatures is TRUE), the training and testing data.frames, character vectors for
failed methods, methods which generated a warning, and what those errors and warnings were,
model performance comparison (if methods includes more than one method), the selected method,
the trained model performance statistics, and the final predicted raster (if predict = TRUE).

In either case, the predicted raster is written to disk if save_path is specified.

Model testing, comparison, and reported metrics

After extracting raster values at n points from the features rasters the point values are split spa-
tially into training and testing sets along a 70/30 split. This is accomplished by creating a grid
(1000*1000) of polygons over the extent of the points and randomly assigning polygons to training
or testing sets. Points within these polygons are then assigned to the corresponding set, ensuring
that the training and testing sets are spatially independent.

Method for selecting the best model:

When specifying multiple model types inmethods, each model type and trainControl pair (if
trainControl is a list of length equal to methods) is run using caret::train(). To speed things
up you can use fastCompare = TRUE. Models are then compared on their ’accuracy’ metric as out-
put by caret::resamples() when run on the testing partition, and the highest-performing model
is selected. If fastCompare is TRUE, this model is then run on the complete data set provided in
outcome. Model statistics are returned upon function completion, which allows the user to select
their own ’best performing’ model based on other criteriaif desired.

Balancing classes in outcome (dependent) variable

Models can be biased if they are given significantly more points in one outcome class vs others,
and best practice is to even out the number of points in each class. If extracting point values from
a vector or raster object and passing a points vector object to this function, a simple way to do that
is by using the "strata" parameter if using terra::spatSample(). If working directly from points,
caret::downSample() and caret::upSample() can be used. See this link for more information.
Note that if passing a polygons object to this function stratified random sampling will automatically
be performed.

Classification or regression

Whether this function treats your inputs as a classification or regression problem depends on the
class attached to the outcome variable. A class factor will be treated as a classification problem
while all other classes will be treated as regression problems.

Author(s)

Ghislain de Laplante (gdela069@uottawa.ca or ghislain.delaplante@yukon.ca)

https://topepo.github.io/caret/subsampling-for-class-imbalances.html

spatPredict 17

Examples

These examples can take a while to run!

Install packages underpinning examples
rlang::check_installed("ranger", reason = "required to run example.")
rlang::check_installed("Rborist", reason = "required to run example.")

Single model, single trainControl

trainControl <- caret::trainControl(
method = "repeatedcv",
number = 2, # 2-fold Cross-validation
repeats = 2, # repeated 2 times
verboseIter = FALSE,
returnResamp = "final",
savePredictions = "all",
allowParallel = TRUE)

outcome <- permafrost_polygons
outcome$Type <- as.factor(outcome$Type)

result <- spatPredict(features = c(aspect, solrad, slope),
outcome = outcome,
poly_sample = 100,
trainControl = trainControl,
methods = "ranger",
n.cores = 2,
predict = TRUE)

terra::plot(result$prediction)

Multiple models, multiple trainControl

trainControl <- list("ranger" = caret::trainControl(
method = "repeatedcv",
number = 2,
repeats = 2,
verboseIter = FALSE,
returnResamp = "final",
savePredictions = "all",
allowParallel = TRUE),

"Rborist" = caret::trainControl(
method = "boot",
number = 2,
repeats = 2,
verboseIter = FALSE,
returnResamp = "final",
savePredictions = "all",
allowParallel = TRUE)
)

18 thinFeatures

result <- spatPredict(features = c(aspect, solrad, slope),
outcome = outcome,
poly_sample = 100,
trainControl = trainControl,
methods = c("ranger", "Rborist"),
n.cores = 2,
predict = TRUE)

terra::plot(result$prediction)

streams Lines representing streams

Description

Lines representing streams

Usage

streams

Format

streams:
A geopackage file loaded as a terra spatVector

Source

A subset of the Yukon CANVEC water flow lines found here

thinFeatures Remove irrelevant predictor variables

Description

Uses VSURF::VSURF() to build random forests and remove irrelevant predictor variables from a
data.frame containing an outcome variable and 2 or more predictor variables.

Usage

thinFeatures(data, outcome_col, n.cores = NULL)

https://open.yukon.ca/data/datasets/water-flow-50k-canvec

veg 19

Arguments

data A data.frame containing a column for the outcome variable and n columns for
predictor variables.

outcome_col The name of the outcome variable column.

n.cores The maximum number of cores to use. Leave NULL to use all cores minus 1.

Value

A list of two data.frames: the outcome of the VSURF algorithm and the data after applying the
VSURF results (rows removed if applicable)

Examples

thinFeatures on 'permafrost' data set

data(permafrost)
res <- thinFeatures(permafrost, "Type", n.cores = 2)

Results will vary due to inherent randomness of random forests!

veg Raster of vegetation types

Description

Raster of vegetation types

Usage

veg

Format

veg:
A tif file loaded as a terra spatRaster

Source

A small subset of the North American Land Cover dataset produced by the Commission for Envi-
ronmental Cooperation, resampled to match cell size of other rasters in this package.

http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/
http://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/

20 wbtCheck

wbtCheck Check WhiteboxTools binaries installation

Description

Checks for the existence of WhiteboxTools in its default directory and installs it if necessary or if
force = TRUE.

Usage

wbtCheck(force = FALSE)

Arguments

force Set TRUE to force update of WhiteboxTools binaries.

Value

Returns the version number of the installed binaries and (if necessary) installs WhiteboxTools in its
default location.

Author(s)

Ghislain de Laplante (gdela069@uottawa.ca or ghislain.delaplante@yukon.ca)

Examples

#Check if WhiteboxTools binaries are installed. If not, install latest version.
wbtCheck()

Update WhiteboxTools binaries if they are already installed.
wbtCheck(force = TRUE)

Index

∗ datasets
aspect, 2
basin_dem, 3
basin_pts, 3
elev, 8
permafrost, 12
permafrost_polygons, 12
slope, 13
solrad, 13
streams, 18
veg, 19

aspect, 2

basin_dem, 3
basin_pts, 3

caret::downSample(), 16
caret::resamples(), 15, 16
caret::train(), 11, 15, 16
caret::trainControl(), 15
caret::upSample(), 16
createStreams, 4

drainageBasins, 5

elev, 8

hydroProcess, 9
hydroProcess(), 4

modelMatch, 11
modelMatch(), 14

permafrost, 12
permafrost_polygons, 12

slope, 13
solrad, 13
spatPredict, 14
spatPredict(), 11

streams, 18

terra::spatSample(), 16
thinFeatures, 18

veg, 19
VSURF::VSURF(), 15, 18

wbtCheck, 20
whitebox::wbt_breach_depressions_least_cost(),

6, 9, 10
whitebox::wbt_d8_flow_accumulation(),

4
whitebox::wbt_d8_pointer(), 4
whitebox::wbt_extract_streams(), 4
whitebox::wbt_fill_single_cell_pits(),

10
whitebox::wbt_remove_short_streams(),

7
whitebox::wbt_repair_stream_vector_topology(),

7

21

	aspect
	basin_dem
	basin_pts
	createStreams
	drainageBasins
	elev
	hydroProcess
	modelMatch
	permafrost
	permafrost_polygons
	slope
	solrad
	spatPredict
	streams
	thinFeatures
	veg
	wbtCheck
	Index

