Romeb implements robust median‑based Bayesian
growth curve modeling that accommodate the three classical missing‑data
mechanisms—MCAR, MAR and MNAR-and complete data, particularly beneficial
when data are nonnormally distributed or include outliers. A detailed
tutorial can be found in Tang & Tong (2025).
The main interface is
Romeb(
Missing_Type, # "MNAR", "MAR", "MCAR", or "no missing"
data, # matrix / data frame
time, # Numeric vector of measurement times (e.g., c(0,1,2,3)).
seed, # reproducibility seed
K = 0, # number of auxiliary variables
chain = 1, # number of MCMC chains
Niter = 6000, # iterations per chain
burnIn = 3000 # burn‑in iterations
)| Argument | Description |
|---|---|
Missing_Type |
Character string specifying the assumed missing‑data mechanism. One
of "MNAR", "MAR", "MCAR",
"no missing". |
data |
Matrix or data frame. If K = 0, all
columns are treated as outcomes y; otherwise the first
K columns are auxiliary variables and the next
Time columns are outcomes. |
time |
Numeric vector of measurement times (e.g., c(0,1,2,3)). |
seed |
Integer seed ensuring reproducibility. |
K |
Non‑negative integer (default 0) giving the number of auxiliary variables. |
chain |
Number of parallel MCMC chains (default 1). |
Niter |
Total iterations per chain (default 6000). |
burnIn |
Iterations discarded as burn‑in (default 3000). |
Running
returns a compact table with the posterior median, Geweke z‑scores, the 95% equal‑tail credible interval, and the 95% highest‑posterior‑density (HPD) interval for each monitored parameter.
Further elements can be accessed directly:
| Element | Content |
|---|---|
Res$quantiles |
Posterior mean, SD, naïve and time‑series SEs, plus selected quantiles for every parameter after burn‑in. |
Res$geweke |
Vector of Geweke diagnostic z‑scores; values within ±1.96 indicate no evidence against lack of convergence. |
Res$credible_intervals |
95% equal‑tail credible intervals (2.5% & 97.5% quantiles). |
Res$hpd_intervals |
95% HPD intervals (shortest 95% region). |
Res$samps_full |
Complete coda::mcmc.list (including burn‑in). Inspect
with coda::traceplot(Res$samps_full[,'par[i]']) for par[i]
. |
Below we illustrate a workflow.
set.seed(123)
Y <- matrix(rnorm(300*5), nrow = 300, ncol = 5) # tiny complete data set
result_full <- Romeb("no missing", data = Y, time = c(0, 1, 2, 3, 4), seed = 123)## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1500
## Unobserved stochastic nodes: 1804
## Total graph size: 14432
##
## Initializing model
## Romeb GCM summary
## ==================
##
## Posterior medians (50% quantiles):
## par[1] par[2] par[3] par[4] par[5]
## 0.010448884 0.008549176 0.171543659 -0.056132922 0.046658630
##
## Geweke test:
## par[1] par[2] par[3] par[4] par[5]
## -0.4295213 0.8113677 0.1677203 -0.2686674 0.5478983
##
## 95% credible intervals:
## 2.5% 97.5%
## par[1] -0.08372728 0.09968858
## par[2] -0.03105851 0.04984433
## par[3] 0.09413207 0.27461789
## par[4] -0.09527199 -0.02609691
## par[5] 0.03244535 0.06536003
##
## 95% hpd intervals:
## par[1] par[2] par[3] par[4] par[5]
## lower -0.08410641 -0.03164083 0.09030855 -0.09251707 0.03161084
## upper 0.09900967 0.04894551 0.26590422 -0.02422712 0.06381646
##
## Use x$samps_full to access full MCMC samples, and coda::traceplot(x$samps_full[,'par[i]']) for the trace plot of par[i].
Note: par [1]: latent intercept, par [2]: latent slope: par [3]: variance of the latent intercept, par [4]: covariance between intercept and slope, par [5]: variance of the latent slope.
Please cite the package as:
Tang,D.and Tong,X.(2025). Romeb: An R Package for Robust Median-Based Bayesian Growth Curve Modeling with Missing Data.
Bibliographic metadata can also be obtained via
citation("Romeb").