## ----setup, include=FALSE----------------------------------------------------- is_check <- ("CheckExEnv" %in% search()) || any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) || !file.exists("../models/Introduction/fit_3.RDS") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = !is_check, dev = "png") if(.Platform$OS.type == "windows"){ knitr::opts_chunk$set(dev.args = list(type = "cairo")) } print_conditional <- function(fit, coef = "delta"){ with(fit, sprintf("%1$s, 95%% CI [%2$s, %3$s]", format(round(mean(RoBTT$posterior[[coef]]), 2), nsmall = 3), format(round(quantile(RoBTT$posterior[[coef]], 0.025), 2), nsmall = 2), format(round(quantile(RoBTT$posterior[[coef]], 0.975), 2), nsmall = 2) )) } ## ----include = FALSE, eval = FALSE-------------------------------------------- # # pre-fit all models (easier to update the code on package update) # library(RoBTT) # # data("fertilization", package = "RoBTT") # # fit_01 <- RoBTT( # x1 = fertilization$Self, # x2 = fertilization$Crossed, # parallel = TRUE, # prior_delta = prior("cauchy", list(0, 1/sqrt(2))), # prior_rho = NULL, # this indicates no prior on the variance allocation factor -> equal variance test # prior_nu = NULL, # this indicates no prior on the degrees of freedom -> normal distribution test # seed = 0 # ) # fit_10 <- RoBTT( # x1 = fertilization$Self, # x2 = fertilization$Crossed, # parallel = TRUE, # prior_delta = prior("cauchy", list(0, 1/sqrt(2))), # prior_rho = prior("beta", list(3, 3)), #prior on variance allocation # prior_rho_null = NULL, # remove models assuming equal variance # prior_nu = NULL, # seed = 0 # ) # fit_1 <- RoBTT( # x1 = fertilization$Self, # x2 = fertilization$Crossed, # parallel = TRUE, # prior_delta = prior("cauchy", list(0, 1/sqrt(2))), # prior_rho = prior("beta", list(3, 3)), # prior_nu = NULL, # seed = 1, # control = set_control(adapt_delta = 0.95) # ) # fit_2 <- RoBTT( # x1 = fertilization$Self, # x2 = fertilization$Crossed, # parallel = TRUE, # prior_delta = prior("cauchy", list(0, 1/sqrt(2))), # prior_rho = prior("beta", list(3, 3)), # prior_nu = prior("exp", list(1)), # prior on degrees of freedom # seed = 2 # ) # fit_3 <- RoBTT( # x1 = fertilization$Self, # x2 = fertilization$Crossed, # parallel = TRUE, # prior_delta = prior("cauchy", list(0, 1/sqrt(2)), list(0, Inf)), # prior_rho = prior("beta", list(3, 3)), # prior_nu = prior("exp", list(1)), # prior_delta_null = prior("normal", list(0, 0.15), list(0, Inf)), #prior distribution and truncation # seed = 3 # ) # # saveRDS(fit_01, file = "../models/Introduction/fit_01.RDS") # saveRDS(fit_10, file = "../models/Introduction/fit_10.RDS") # saveRDS(fit_1, file = "../models/Introduction/fit_1.RDS") # saveRDS(fit_2, file = "../models/Introduction/fit_2.RDS") # saveRDS(fit_3, file = "../models/Introduction/fit_3.RDS") ## ----include = FALSE---------------------------------------------------------- # pre-load the fitted models to save time on compilation library(RoBTT) fit_01 <- readRDS(file = "../models/Introduction/fit_01.RDS") fit_10 <- readRDS(file = "../models/Introduction/fit_10.RDS") fit_1 <- readRDS(file = "../models/Introduction/fit_1.RDS") fit_2 <- readRDS(file = "../models/Introduction/fit_2.RDS") fit_3 <- readRDS(file = "../models/Introduction/fit_3.RDS") ## ----------------------------------------------------------------------------- library(RoBTT) data("fertilization", package = "RoBTT") head(fertilization) ## ----------------------------------------------------------------------------- # get overall summary summary(fit_01) ## ----------------------------------------------------------------------------- # get individual model summaries summary(fit_01, type = "models") ## ----------------------------------------------------------------------------- summary(fit_01, conditional = TRUE) ## ----------------------------------------------------------------------------- summary(fit_10) ## ----------------------------------------------------------------------------- summary(fit_10, type = "models") ## ----------------------------------------------------------------------------- summary(fit_1) ## ----------------------------------------------------------------------------- summary(fit_1, type = "models") ## ----------------------------------------------------------------------------- summary(fit_2, type = "models") ## ----------------------------------------------------------------------------- summary(fit_3, type = "models")