## ----setup, include = FALSE--------------------------------------------------- is_check <- ("CheckExEnv" %in% search()) || any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) || !file.exists("../models/ReproducingBMA/BMA_PowerPoseTest.RDS") knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = !is_check, dev = "png") if(.Platform$OS.type == "windows"){ knitr::opts_chunk$set(dev.args = list(type = "cairo")) } ## ----include = FALSE---------------------------------------------------------- library(RoBMA) # we pre-load the RoBMA models, the fitting time is around 2-5 minutes fit_BMA_test <- readRDS(file = "../models/ReproducingBMA/BMA_PowerPoseTest.RDS") fit_BMA_est <- readRDS(file = "../models/ReproducingBMA/BMA_PowerPoseEst.RDS") fit_RoBMA_test <- readRDS(file = "../models/ReproducingBMA/PowerPoseTest.RDS") fit_RoBMA_est <- readRDS(file = "../models/ReproducingBMA/PowerPoseEst.RDS") ## ----include = FALSE, eval = FALSE-------------------------------------------- # # R package version updating # library(RoBMA) # # data("power_pose", package = "metaBMA") # # fit_RoBMA_test <- RoBMA(d = power_pose$effectSize, se = power_pose$SE, study_names = power_pose$study, # priors_effect = prior( # distribution = "cauchy", # parameters = list(location = 0, scale = 1/sqrt(2)), # truncation = list(0, Inf)), # priors_heterogeneity = prior( # distribution = "invgamma", # parameters = list(shape = 1, scale = 0.15)), # priors_bias = NULL, # transformation = "cohens_d", seed = 1, parallel = TRUE) # # fit_RoBMA_est <- RoBMA(d = power_pose$effectSize, se = power_pose$SE, study_names = power_pose$study, # priors_effect = prior( # distribution = "cauchy", # parameters = list(location = 0, scale = 1/sqrt(2))), # priors_heterogeneity = prior( # distribution = "invgamma", # parameters = list(shape = 1, scale = 0.15)), # priors_bias = NULL, # priors_effect_null = NULL, # transformation = "cohens_d", seed = 2, parallel = TRUE) # # saveRDS(fit_RoBMA_test, file = "../models/ReproducingBMA/PowerPoseTest.RDS") # saveRDS(fit_RoBMA_est, file = "../models/ReproducingBMA/PowerPoseEst.RDS") ## ----------------------------------------------------------------------------- data("power_pose", package = "metaBMA") power_pose[,c("study", "effectSize", "SE")] ## ----------------------------------------------------------------------------- fit_BMA_test$inclusion round(fit_BMA_est$estimates,2) ## ----------------------------------------------------------------------------- summary(fit_RoBMA_test) summary(fit_RoBMA_est) ## ----fig_mu_est, dpi = 300, fig.width = 4, fig.height = 4, out.width = "50%", fig.align = "center"---- plot(fit_RoBMA_est, parameter = "mu", prior = TRUE, xlim = c(-1, 1)) ## ----fig_mu_test, dpi = 300, fig.width = 4, fig.height = 4, out.width = "50%", fig.align = "center"---- plot(fit_RoBMA_test, parameter = "mu", prior = TRUE, xlim = c(-.5, 1)) ## ----fig_models, dpi = 300, fig.height = 4.5, fig.width = 7, out.width = '75%', fig.align = "center"---- plot_models(fit_RoBMA_est) ## ----fig_forest, dpi = 300, fig.height = 4.5, fig.width = 7, out.width = '75%', fig.align = "center"---- forest(fit_RoBMA_est)