
Package ‘RcppML’
October 12, 2022

Type Package

Title Rcpp Machine Learning Library

Version 0.3.7

Date 2021-09-21

Description Fast machine learning algorithms including matrix factorization
and divisive clustering for large sparse and dense matrices.

License GPL (>= 2)

Imports Rcpp, Matrix, methods, stats

LinkingTo Rcpp, RcppEigen

VignetteBuilder knitr

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/zdebruine/RcppML

BugReports https://github.com/zdebruine/RcppML/issues

NeedsCompilation yes

Author Zachary DeBruine [aut, cre] (<https://orcid.org/0000-0003-2234-4827>)

Maintainer Zachary DeBruine <zacharydebruine@gmail.com>

Repository CRAN

Date/Publication 2021-09-21 19:00:02 UTC

R topics documented:
bipartition . 2
dclust . 4
getRcppMLthreads . 6
mse . 7
nmf . 8
nnls . 12

1

https://github.com/zdebruine/RcppML
https://github.com/zdebruine/RcppML/issues
https://orcid.org/0000-0003-2234-4827

2 bipartition

project . 14
RcppML . 16
setRcppMLthreads . 16

Index 18

bipartition Bipartition a sample set

Description

Spectral biparitioning by rank-2 matrix factorization

Usage

bipartition(
A,
tol = 1e-05,
maxit = 100,
nonneg = TRUE,
samples = 1:ncol(A),
seed = NULL,
verbose = FALSE,
calc_dist = FALSE,
diag = TRUE

)

Arguments

A matrix of features-by-samples in dense or sparse format (preferred classes are
"matrix" or "Matrix::dgCMatrix", respectively). Prefer sparse storage when
more than half of all values are zero.

tol stopping criteria, the correlation distance between w across consecutive itera-
tions, 1− cor(wi, wi−1)

maxit stopping criteria, maximum number of alternating updates of w and h

nonneg enforce non-negativity

samples samples to include in bipartition, numbered from 1 to ncol(A). Default is NULL
for all samples.

seed random seed for model initialization

verbose print model tolerances between iterations

calc_dist calculate the relative cosine distance of samples within a cluster to either cluster
centroid. If TRUE, centers for clusters will also be calculated.

diag scale factors in w and h to sum to 1 by introducing a diagonal, d. This should
generally never be set to FALSE. Diagonalization enables symmetry of models
in factorization of symmetric matrices, convex L1 regularization, and consistent
factor scalings.

bipartition 3

Details

Spectral bipartitioning is a popular subroutine in divisive clustering. The sign of the difference
between sample loadings in factors of a rank-2 matrix factorization gives a bipartition that is nearly
identical to an SVD.

Rank-2 matrix factorization by alternating least squares is faster than rank-2-truncated SVD (i.e.
irlba).

This function is a specialization of rank-2 nmf with support for factorization of only a subset of
samples, and with additional calculations on the factorization model relevant to bipartitioning. See
nmf for details regarding rank-2 factorization.

Value

A list giving the bipartition and useful statistics:

• v : vector giving difference between sample loadings between factors in a rank-2 factorization

• dist : relative cosine distance of samples within a cluster to centroids of assigned vs. not-
assigned cluster

• size1 : number of samples in first cluster (positive loadings in ’v’)

• size2 : number of samples in second cluster (negative loadings in ’v’)

• samples1: indices of samples in first cluster

• samples2: indices of samples in second cluster

• center1 : mean feature loadings across samples in first cluster

• center2 : mean feature loadings across samples in second cluster

Author(s)

Zach DeBruine

References

Kuang, D, Park, H. (2013). "Fast rank-2 nonnegative matrix factorization for hierarchical document
clustering." Proc. 19th ACM SIGKDD intl. conf. on Knowledge discovery and data mining.

See Also

nmf, dclust

Examples

Not run:
library(Matrix)
data(iris)
A <- as(as.matrix(iris[,1:4]), "dgCMatrix")
bipartition(A, calc_dist = TRUE)

End(Not run)

4 dclust

dclust Divisive clustering

Description

Recursive bipartitioning by rank-2 matrix factorization with an efficient modularity-approximate
stopping criteria

Usage

dclust(
A,
min_samples,
min_dist = 0,
verbose = TRUE,
tol = 1e-05,
maxit = 100,
nonneg = TRUE,
seed = NULL

)

Arguments

A matrix of features-by-samples in sparse format (preferred class is "Matrix::dgCMatrix")

min_samples stopping criteria giving the minimum number of samples permitted in a cluster

min_dist stopping criteria giving the minimum cosine distance of samples within a cluster
to the center of their assigned vs. unassigned cluster. If 0, neither this distance
nor cluster centroids will be calculated.

verbose print number of divisions in each generation

tol in rank-2 NMF, the correlation distance (1−R2) between w across consecutive
iterations at which to stop factorization

maxit stopping criteria, maximum number of alternating updates of w and h

nonneg in rank-2 NMF, enforce non-negativity

seed random seed for rank-2 NMF model initialization

Details

Divisive clustering is a sensitive and fast method for sample classification. Samples are recursively
partitioned into two groups until a stopping criteria is satisfied and prevents successful partitioning.

See nmf and bipartition for technical considerations and optimizations relevant to bipartitioning.

Stopping criteria. Two stopping criteria are used to prevent indefinite division of clusters and tune
the clustering resolution to a desirable range:

• min_samples: Minimum number of samples permitted in a cluster

dclust 5

• min_dist: Minimum cosine distance of samples to their cluster center relative to their unas-
signed cluster center (an approximation of Newman-Girvan modularity)

Newman-Girvan modularity (Q) is an interpretable and widely used measure of modularity for a
bipartition. However, it requires the calculation of distance between all within-cluster and between-
cluster sample pairs. This is computationally intensive, especially for large sample sets.

dclust uses a measure which linearly approximates Newman-Girvan modularity, and simply re-
quires the calculation of distance between all samples in a cluster and both cluster centers (the
assigned and unassigned center), which is orders of magnitude faster to compute. Cosine distance
is used instead of Euclidean distance since it handles outliers and sparsity well.

A bipartition is rejected if either of the two clusters contains fewer than min_samples or if the mean
relative cosine distance of the bipartition is less than min_dist.

A bipartition will only be attempted if there are more than 2 * min_samples samples in the cluster,
meaning that dist may not be calculated for some clusters.

Reproducibility. Because rank-2 NMF is approximate and requires random initialization, results
may vary slightly across restarts. Therefore, specify a seed to guarantee absolute reproducibility.

Other than setting the seed, reproducibility may be improved by setting tol to a smaller number to
increase the exactness of each bipartition.

Value

A list of lists corresponding to individual clusters:

• id : character sequence of "0" and "1" giving position of clusters along splitting hierarchy

• samples : indices of samples in the cluster

• center : mean feature expression of all samples in the cluster

• dist : if applicable, relative cosine distance of samples in cluster to assigned/unassigned cluster
center.

• leaf : is cluster a leaf node

Author(s)

Zach DeBruine

References

Schwartz, G. et al. "TooManyCells identifies and visualizes relationships of single-cell clades".
Nature Methods (2020).

Newman, MEJ. "Modularity and community structure in networks". PNAS (2006)

Kuang, D, Park, H. (2013). "Fast rank-2 nonnegative matrix factorization for hierarchical document
clustering." Proc. 19th ACM SIGKDD intl. conf. on Knowledge discovery and data mining.

See Also

bipartition, nmf

6 getRcppMLthreads

Examples

Not run:
library(Matrix)
data(USArrests)
A <- as(as.matrix(t(USArrests)), "dgCMatrix")
clusters <- dclust(A, min_samples = 2, min_dist = 0.001)
str(clusters)

End(Not run)

getRcppMLthreads Get the number of threads RcppML should use

Description

Get the number of threads that will be used by RcppML functions supporting parallelization with
OpenMP. Use setRcppMLthreads to set the number of threads to be used.

Usage

getRcppMLthreads()

Value

integer giving number of threads to be used by RcppML functions. 0 corresponds to all available
threads, as determined by OpenMP.

Author(s)

Zach DeBruine

See Also

setRcppMLthreads

Examples

Not run:
set serial configuration
setRcppMLthreads(1)
getRcppMLthreads()

restore default parallel configuration,
letting OpenMP decide how many threads to use
setRcppMLthreads(0)
getRcppMLthreads()

End(Not run)

mse 7

mse Mean Squared Error loss of a factor model

Description

MSE of factor models w and h given sparse matrix A

Usage

mse(A, w, d = NULL, h, mask_zeros = FALSE)

Arguments

A matrix of features-by-samples in dense or sparse format (preferred classes are
"matrix" or "Matrix::dgCMatrix", respectively). Prefer sparse storage when
more than half of all values are zero.

w dense matrix of class matrix with factors (columns) by features (rows)

d diagonal scaling vector of rank length

h dense matrix of class matrix with samples (columns) by factors (rows)

mask_zeros handle zeros as missing values, available only when A is sparse

Details

Mean squared error of a matrix factorization of the form A = wdh is given by∑
i,j (A− wdh)2

ij

where i and j are the number of rows and columns in A.

Thus, this function simply calculates the cross-product of wh or wdh (if d is specified), subtracts
that from A, squares the result, and calculates the mean of all values.

If no diagonal scaling vector is present in the model, input d = rep(1, k) where k is the rank of the
model.

Parallelization. Calculation of mean squared error is performed in parallel across columns in A
using the number of threads set by setRcppMLthreads. By default, all available threads are used,
see getRcppMLthreads.

Value

mean squared error of the factorization model

Author(s)

Zach DeBruine

8 nmf

Examples

Not run:
library(Matrix)
A <- Matrix::rsparsematrix(1000, 1000, 0.1)
model <- nmf(A, k = 10, tol = 0.01)
c_mse <- mse(A, model$w, model$d, model$h)
R_mse <- mean((A - model$w %*% Diagonal(x = model$d) %*% model$h)^2)
all.equal(c_mse, R_mse)

End(Not run)

nmf Non-negative matrix factorization

Description

Sparse matrix factorization of the form A = wdh by alternating least squares with optional non-
negativity constraints.

Usage

nmf(
A,
k,
tol = 1e-04,
maxit = 100,
verbose = TRUE,
L1 = c(0, 0),
seed = NULL,
mask_zeros = FALSE,
diag = TRUE,
nonneg = TRUE

)

Arguments

A matrix of features-by-samples in dense or sparse format (preferred classes are
"matrix" or "Matrix::dgCMatrix", respectively). Prefer sparse storage when
more than half of all values are zero.

k rank

tol stopping criteria, the correlation distance between w across consecutive itera-
tions, 1− cor(wi, wi−1)

maxit stopping criteria, maximum number of alternating updates of w and h

verbose print model tolerances between iterations

L1 L1/LASSO penalties between 0 and 1, array of length two for c(w, h)

seed random seed for model initialization

nmf 9

mask_zeros handle zeros as missing values, available only when A is sparse

diag scale factors in w and h to sum to 1 by introducing a diagonal, d. This should
generally never be set to FALSE. Diagonalization enables symmetry of models
in factorization of symmetric matrices, convex L1 regularization, and consistent
factor scalings.

nonneg enforce non-negativity

Details

This fast non-negative matrix factorization (NMF) implementation decomposes a matrix A into
lower-rank non-negative matrices w and h, with factors scaled to sum to 1 via multiplication by a
diagonal, d:

A = wdh

The scaling diagonal enables symmetric factorization, convex L1 regularization, and consistent
factor scalings regardless of random initialization.

The factorization model is randomly initialized, and w and h are updated alternately using least
squares. Given A and w, h is updated according to the equation:

wTwh = wAj

This equation is in the form ax = b where a = wTw, x = h, and b = wAj for all columns j in A.

The corresponding update for w is
hhTw = hAT

j

Stopping criteria. Alternating least squares projections (see project subroutine) are repeated until
a stopping criteria is satisfied, which is either a maximum number of iterations or a tolerance based
on the correlation distance between models (1− cor(wi, wi−1)) across consecutive iterations. Use
the tol parameter to control the stopping criteria for alternating updates:

• tol = 1e-2 is appropriate for approximate mean squared error determination and coarse cross-
validation, useful for rank determination.

• tol = 1e-3 to 1e-4 are suitable for rapid expermentation, cross-validation, and preliminary
analysis.

• tol = 1e-5 and smaller for publication-quality runs

• tol = 1e-10 and smaller for robust factorizations at or near machine-precision

Parallelization. Least squares projections in factorizations of rank-3 and greater are parallelized
using the number of threads set by setRcppMLthreads. By default, all available threads are used,
see getRcppMLthreads. The overhead of parallization is too great to benefit rank-1 and rank-2
factorization.

Specializations. There are specializations for symmetric matrices, and for rank-1 and rank-2 fac-
torization.

L1 regularization. L1 penalization increases the sparsity of factors, but does not change the infor-
mation content of the model or the relative contributions of the leading coefficients in each factor
to the model. L1 regularization only slightly increases the error of a model. L1 penalization should
be used to aid interpretability. Penalty values should range from 0 to 1, where 1 gives complete

10 nmf

sparsity. In this implementation of NMF, a scaling diagonal ensures that the L1 penalty is equally
applied across all factors regardless of random initialization and the distribution of the model. Many
other implementations of matrix factorization claim to apply L1, but the magnitude of the penalty
is at the mercy of the random distribution and more significantly affects factors with lower overall
contribution to the model. L1 regularization of rank-1 and rank-2 factorizations has no effect.

Rank-2 factorization. When k = 2, a very fast optimized algorithm is used. Two-variable least
squares solutions to the problem ax = b are found by direct substitution:

x1 =
a22b1 − a12b2
a11a22 − a212

x2 =
a11b2 − a12b1
a11a22 − a212

In the above equations, the denominator is constant and thus needs to be calculated only once.
Additionally, if non-negativity constraints are to be imposed, if x1 < 0 then x1 = 0 and x2 = b1

a11
.

Similarly, if x2 < 0 then x2 = 0 and x1 = b2
a22

.

Rank-2 NMF is useful for bipartitioning, and is a subroutine in bipartition, where the sign of the
difference between sample loadings in both factors gives the partitioning.

Rank-1 factorization. Rank-1 factorization by alternating least squares gives vectors equivalent
to the first singular vectors in an SVD. It is a normalization of the data to a middle point, and
may be useful for ordering samples based on the most significant axis of variation (i.e. pseudotime
trajectories). Diagonal scaling guarantees consistent linear scaling of the factor across random
restarts.

Random seed and reproducibility. Results of a rank-1 and rank-2 factorizations should be repro-
ducible regardless of random seed. For higher-rank models, results across random restarts should,
in theory, be comparable at very high tolerances (i.e. machine precision for double, corresponding
to about tol = 1e-10). However, to guarantee reproducibility without such low tolerances, set the
seed argument. Note that set.seed() will not work. Only random initialization is supported, as
other methods incur unnecessary overhead and sometimes trap updates into local minima.

Rank determination. This function does not attempt to provide a method for rank determination.
Like any clustering algorithm or dimensional reduction, finding the optimal rank can be subjective.
An easy way to estimate rank uses the "elbow method", where the inflection point on a plot of Mean
Squared Error loss (MSE) vs. rank gives a good idea of the rank at which most of the signal has
been captured in the model. Unfortunately, this inflection point is not often as obvious for NMF as
it is for SVD or PCA.

k-fold cross-validation is a better method. Missing value of imputation has previously been pro-
posed, but is arguably no less subjective than test-training splits and requires computationally slower
factorization updates using missing values, which are not supported here.

Symmetric factorization. Special optimization for symmetric matrices is automatically applied.
Specifically, alternating updates of w and h require transposition of A, but A == t(A) when A is
symmetric, thus no up-front transposition is performed.

Zero-masking. When zeros in a data structure can be regarded as "missing", mask_zeros = TRUE
may be set. However, this requires a slower algorithm, and tolerances will fluctuate more dramati-
cally.

Publication reference. For theoretical and practical considerations, please see our manuscript:
"DeBruine ZJ, Melcher K, Triche TJ (2021) High-performance non-negative matrix factorization
for large single cell data." on BioRXiv.

nmf 11

Value

A list giving the factorization model:

• w : feature factor matrix

• d : scaling diagonal vector

• h : sample factor matrix

• tol : tolerance between models at final update

• iter : number of alternating updates run

Author(s)

Zach DeBruine

References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

Lin, X, and Boutros, PC (2020). "Optimization and expansion of non-negative matrix factorization."
BMC Bioinformatics.

Lee, D, and Seung, HS (1999). "Learning the parts of objects by non-negative matrix factorization."
Nature.

Franc, VC, Hlavac, VC, Navara, M. (2005). "Sequential Coordinate-Wise Algorithm for the Non-
negative Least Squares Problem". Proc. Int’l Conf. Computer Analysis of Images and Patterns.
Lecture Notes in Computer Science.

See Also

nnls, project, mse

Examples

Not run:
library(Matrix)
basic NMF
model <- nmf(rsparsematrix(1000, 100, 0.1), k = 10)

compare rank-2 NMF to second left vector in an SVD
data(iris)
A <- as(as.matrix(iris[,1:4]), "dgCMatrix")
nmf_model <- nmf(A, 2, tol = 1e-5)
bipartitioning_vector <- apply(nmf_model$w, 1, diff)
second_left_svd_vector <- base::svd(A, 2)$u[,2]
abs(cor(bipartitioning_vector, second_left_svd_vector))

compare rank-1 NMF with first singular vector in an SVD
abs(cor(nmf(A, 1)$w[,1], base::svd(A, 2)$u[,1]))

symmetric NMF

12 nnls

A <- crossprod(rsparsematrix(100, 100, 0.02))
model <- nmf(A, 10, tol = 1e-5, maxit = 1000)
plot(model$w, t(model$h))
see package vignette for more examples

End(Not run)

nnls Non-negative least squares

Description

Solves the equation a %*% x = b for x subject to x > 0.

Usage

nnls(a, b, cd_maxit = 100L, cd_tol = 1e-08, fast_nnls = FALSE, L1 = 0)

Arguments

a symmetric positive definite matrix giving coefficients of the linear system

b matrix giving the right-hand side(s) of the linear system

cd_maxit maximum number of coordinate descent iterations

cd_tol stopping criteria, difference in x across consecutive solutions over the sum of x

fast_nnls initialize coordinate descent with a FAST NNLS approximation

L1 L1/LASSO penalty to be subtracted from b

Details

This is a very fast implementation of non-negative least squares (NNLS), suitable for very small or
very large systems.

Algorithm. Sequential coordinate descent (CD) is at the core of this implementation, and requires
an initialization of x. There are two supported methods for initialization of x:

1. Zero-filled initialization when fast_nnls = FALSE and cd_maxit > 0. This is generally very
efficient for well-conditioned and small systems.

2. Approximation with FAST when fast_nnls = TRUE. Forward active set tuning (FAST), de-
scribed below, finds an approximate active set using unconstrained least squares solutions
found by Cholesky decomposition and substitution. To use only FAST approximation, set
cd_maxit = 0.

a must be symmetric positive definite if FAST NNLS is used, but this is not checked.

See our BioRXiv manuscript (references) for benchmarking against Lawson-Hanson NNLS and for
a more technical introduction to these methods.

Coordinate Descent NNLS. Least squares by sequential coordinate descent is used to ensure
the solution returned is exact. This algorithm was introduced by Franc et al. (2005), and our

nnls 13

implementation is a vectorized and optimized rendition of that found in the NNLM R package by
Xihui Lin (2020).

FAST NNLS. Forward active set tuning (FAST) is an exact or near-exact NNLS approximation
initialized by an unconstrained least squares solution. Negative values in this unconstrained solution
are set to zero (the "active set"), and all other values are added to a "feasible set". An unconstrained
least squares solution is then solved for the "feasible set", any negative values in the resulting
solution are set to zero, and the process is repeated until the feasible set solution is strictly positive.

The FAST algorithm has a definite convergence guarantee because the feasible set will either con-
verge or become smaller with each iteration. The result is generally exact or nearly exact for small
well-conditioned systems (< 50 variables) within 2 iterations and thus sets up coordinate descent for
very rapid convergence. The FAST method is similar to the first phase of the so-called "TNT-NN"
algorithm (Myre et al., 2017), but the latter half of that method relies heavily on heuristics to refine
the approximate active set, which we avoid by using coordinate descent instead.

Value

vector or matrix giving solution for x

Author(s)

Zach DeBruine

References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

Franc, VC, Hlavac, VC, and Navara, M. (2005). "Sequential Coordinate-Wise Algorithm for the
Non-negative Least Squares Problem. Proc. Int’l Conf. Computer Analysis of Images and Patterns."

Lin, X, and Boutros, PC (2020). "Optimization and expansion of non-negative matrix factorization."
BMC Bioinformatics.

Myre, JM, Frahm, E, Lilja DJ, and Saar, MO. (2017) "TNT-NN: A Fast Active Set Method for
Solving Large Non-Negative Least Squares Problems". Proc. Computer Science.

See Also

nmf, project

Examples

Not run:
compare solution to base::solve for a random system
X <- matrix(runif(100), 10, 10)
a <- crossprod(X)
b <- crossprod(X, runif(10))
unconstrained_soln <- solve(a, b)
nonneg_soln <- nnls(a, b)
unconstrained_err <- mean((a %*% unconstrained_soln - b)^2)
nonnegative_err <- mean((a %*% nonneg_soln - b)^2)
unconstrained_err

14 project

nonnegative_err
all.equal(solve(a, b), nnls(a, b))

example adapted from multiway::fnnls example 1
X <- matrix(1:100,50,2)
y <- matrix(101:150,50,1)
beta <- solve(crossprod(X)) %*% crossprod(X, y)
beta
beta <- nnls(crossprod(X), crossprod(X, y))
beta

End(Not run)

project Project a linear factor model

Description

Solves the equation A = wh for either h or w given either w or h and A

Usage

project(A, w = NULL, h = NULL, nonneg = TRUE, L1 = 0, mask_zeros = FALSE)

Arguments

A matrix of features-by-samples in dense or sparse format (preferred classes are
"matrix" or "Matrix::dgCMatrix", respectively). Prefer sparse storage when
more than half of all values are zero.

w dense matrix of factors x features giving the linear model to be projected (if h =
NULL)

h dense matrix of factors x samples giving the linear model to be projected (if w =
NULL)

nonneg enforce non-negativity

L1 L1/LASSO penalty to be applied. No scaling is performed. See details.

mask_zeros handle zeros as missing values, available only when A is sparse

Details

For the classical alternating least squares matrix factorization update problem A = wh, the updates
(or projection) of h is given by the equation:

wTwh = wAj

which is in the form ax = b where a = wTw x = h and b = wAj for all columns j in A.

Given A, project can solve for either w or h given the other:

project 15

• When given A and w, h is found using a highly efficient parallelization scheme.

• When given A and h, w is found without transposition of A (as would be the case in traditional
block-pivoting matrix factorization) by accumulating the right-hand sides of linear systems in-
place in A, then solving the systems. Note that w may also be found by inputting the transpose
of A and h in place of w, (i.e. A = t(A), w = h, h = NULL). However, for most applications,
the cost of a single projection in-place is less than transposition of A. However, for matrix
factorization, it is desirable to transpose A if possible because many projections are needed.

Parallelization. Least squares projections in factorizations of rank-3 and greater are parallelized
using the number of threads set by setRcppMLthreads. By default, all available threads are used,
see getRcppMLthreads. The overhead of parallization is too great for rank-1 and -2 factorization.

L1 Regularization. Any L1 penalty is subtracted from b and should generally be scaled to max(b),
where b = WAj for all columns j in A. An easy way to properly scale an L1 penalty is to normalize
all columns in w to sum to 1. No scaling is applied in this function. Such scaling guarantees that
L1 = 1 gives a completely sparse solution.

Specializations. There are specializations for symmetric input matrices, and for rank-1 and rank-2
projections. See documentation for nmf for theoretical details and guidance.

Publication reference. For theoretical and practical considerations, please see our manuscript:
"DeBruine ZJ, Melcher K, Triche TJ (2021) High-performance non-negative matrix factorization
for large single cell data." on BioRXiv.

Value

matrix h or w

Author(s)

Zach DeBruine

References

DeBruine, ZJ, Melcher, K, and Triche, TJ. (2021). "High-performance non-negative matrix factor-
ization for large single-cell data." BioRXiv.

See Also

nnls, nmf

Examples

Not run:
library(Matrix)
w <- matrix(runif(1000 * 10), 1000, 10)
h_true <- matrix(runif(10 * 100), 10, 100)
A is the crossproduct of "w" and "h" with 10% signal dropout
A <- (w %*% h_true) * (rsparsematrix(1000, 100, 0.9) > 0)
h <- project(A, w)
cor(as.vector(h_true), as.vector(h))

16 setRcppMLthreads

alternating projections refine solution (like NMF)
mse_bad <- mse(A, w, rep(1, ncol(w)), h) # mse before alternating updates
h <- project(A, w = w)
w <- project(A, h = h)
h <- project(A, w)
w <- project(A, h = h)
h <- project(A, w)
w <- t(project(A, h = h))
mse_better <- mse(A, w, rep(1, ncol(w)), h) # mse after alternating updates
mse_better < mse_bad

two ways to solve for "w" that give the same solution
w <- project(A, h = h)
w2 <- project(t(A), w = t(h))
all.equal(w, w2)

End(Not run)

RcppML RcppML: Rcpp Machine Learning Library

Description

High-performance non-negative matrix factorization and linear model projection for sparse matri-
ces, and fast non-negative least squares implementations

Author(s)

Zach DeBruine

setRcppMLthreads Set the number of threads RcppML should use

Description

The number of threads is 0 by default (corresponding to all available threads), but can be set manu-
ally using this function. If you clear environment variables or affect the "RcppMLthreads" environ-
ment variable specifically, you will need to set your number of preferred threads again.

Usage

setRcppMLthreads(threads)

Arguments

threads number of threads to be used in RcppML functions that are parallelized with
OpenMP.

setRcppMLthreads 17

Details

The number of threads set affects OpenMP parallelization only for functions in the RcppML pack-
age. It does not affect other R packages that use OpenMP. Parallelization is used for projection of
linear factor models with rank > 2, calculation of mean squared error for linear factor models, and
for divisive clustering.

Author(s)

Zach DeBruine

See Also

getRcppMLthreads

Examples

Not run:
set serial configuration
setRcppMLthreads(1)
getRcppMLthreads()

restore default parallel configuration,
letting OpenMP decide how many threads to use
setRcppMLthreads(0)
getRcppMLthreads()

End(Not run)

Index

bipartition, 2, 4, 5, 10

dclust, 3, 4

getRcppMLthreads, 6, 7, 9, 15, 17

mse, 7, 11

nmf, 3–5, 8, 13, 15
nnls, 11, 12, 15

project, 9, 11, 13, 14

RcppML, 16
RcppML-package (RcppML), 16

setRcppMLthreads, 6, 7, 9, 15, 16

18

	bipartition
	dclust
	getRcppMLthreads
	mse
	nmf
	nnls
	project
	RcppML
	setRcppMLthreads
	Index

