---
title: "Optimal Dose Escalation Using Deep Reinforcement Learning"
author: "Kentaro Matsuura"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Optimal Dose Escalation Using Deep Reinforcement Learning}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# RLescalation
## Overview
The purpose of this `RLescalation` package is to easily construct an dose escalation rule that directly optimizes the percentages of correct selection (PCS) of MTDs. Several high-level functions are also provided to make it easy to perform simulation studies.
## Installation
You can install the stable version from CRAN as follows.
```{r eval=FALSE}
install.packages("RLescalation")
```
You can install the development version from GitHub as follows.
```{r eval=FALSE}
# install.packages("remotes")
remotes::install_github("MatsuuraKentaro/RLescalation")
```
# Example
We demonstrate computing an optimal dose escalation by reinforcement learning for the example in Sect. 3 of [the original paper](https://doi.org/10.1080/10543406.2023.2170402).
When you load `RLescalation` as follows, Python itself and the Python packages to conduct reinforcement learning will be installed.
```{r eval=FALSE}
library(RLescalation)
```
```{r eval=FALSE, echo=FALSE}
RLescalation::setup_python()
```
## Learn a dose escalation rule
We obtain an optimal dose escalation rule by executing `learn_escalation_rule()` with the number of doses `J` and the target DLT probability `target` (please see `help("learn_escalation_rule")` for other arguments).
```{r eval=FALSE}
escalation_rule <- learn_escalation_rule(
J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
N_total = 36, N_cohort = 3, seed = 123,
rl_config = rl_config_set(iter = 1000)
)
escalation_rule
#>
#> dir: escalation_rules/20250101_162633
#> created at: 2025-01-01 17:43:23
#> call:
#> learn_escalation_rule(J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
#> N_total = 36, N_cohort = 3, seed = 123, rl_config = rl_config_set(iter = 1000))
#> iterations: 1000
#> checkpoints: 500, 600, 700, 800, 900, 1000
```
With the default settings, it takes roughly 5-20 seconds per iter, so it would take about 1.5-6 hours when `iter = 1000`.
## How to use the escalation rule
To compute optimal action using the obtained escalation rule, pass the current dose index (i.e., one of `1`, `2`, ..., `J`) and data of the number of assigned patients and DLTs for each dose to `opt_action()`.
```{r eval=FALSE}
current_dose <- 3
some_Ns <- c(3, 6, 3, 0, 0, 0)
some_DLTs <- c(0, 1, 1, 0, 0, 0)
escalation_rule$opt_action(current_dose, some_Ns, some_DLTs)
#> [1] "up"
```
If the returned action is `MTD_1`, ..., `MTD_J`, or `no_MTD` (stop the trial because of toxicity), it means the end of the trial.
## How to evaluate the escalation rule
A convenient high-level function (`simulate_one_trial`) is provided to evaluate the obtained escalation rule. The following is an example of code to perform a simulation study similar to Sect. 3 of the original paper.
```{r eval=FALSE}
eval_scenarios <- list(
c(0.04, 0.05, 0.09, 0.14, 0.15, 0.24),
c(0.07, 0.16, 0.23, 0.27, 0.34, 0.55),
c(0.34, 0.42, 0.46, 0.49, 0.58, 0.62),
c(0.05, 0.08, 0.11, 0.15, 0.60, 0.72)
)
n_sim <- 1000 # the number of simulated clinical trials
sim_list <- list()
for (scenarioID in seq_len(length(eval_scenarios))) {
prob_true <- eval_scenarios[[scenarioID]]
for (simID in seq_len(n_sim)) {
sim_one <- simulate_one_trial(escalation_rule, prob_true, seed = simID)
sim_list[[length(sim_list) + 1]] <- data.frame(
scenarioID = scenarioID, simID = simID, sim_one, check.names = FALSE)
}
}
d_sim <- do.call(rbind, sim_list)
head(d_sim, 13)
#> scenarioID simID cohortID dose N DLT recommended
#> 1 1 1 1 1 3 0 up
#> 2 1 1 2 2 3 0 up
#> 3 1 1 3 3 3 0 up
#> 4 1 1 4 4 3 1 up
#> 5 1 1 5 5 3 0 up
#> 6 1 1 6 6 3 2 stay
#> 7 1 1 7 6 3 2 stay
#> 8 1 1 8 6 3 1 stay
#> 9 1 1 9 6 3 1 stay
#> 10 1 1 10 6 3 0 stay
#> 11 1 1 11 6 3 0 stay
#> 12 1 1 12 6 3 0 MTD_6
#> 13 1 2 1 1 3 0 up
```
The following code is an example of calculating the PCS.
```{r eval=FALSE}
library(dplyr)
MTD_true <- list("MTD_6", c("MTD_3", "MTD_4"), "no_MTD", "MTD_4")
d_res <- d_sim |>
filter(cohortID == max(cohortID), .by = c(scenarioID, simID)) |>
rowwise() |>
mutate(correct = if_else(recommended %in% MTD_true[[scenarioID]], 1, 0)) |>
ungroup() |>
summarise(PCS = mean(correct), .by = scenarioID)
d_res
#> # A tibble: 4 × 2
#> scenarioID PCS
#>
#> 1 1 0.833
#> 2 2 0.731
#> 3 3 0.411
#> 4 4 0.531
```
# Tips
## Custom scenarios for reinforcement learning
If you want to use custom scenarios for reinforcement learning, you can pass the custom scenarios by specifying the argument `rl_scenarios` in `learn_escalation_rule` function.
```{r eval=FALSE}
my_scenarios <- list(
prob = list(c(0.05, 0.11, 0.25, 0.31, 0.32, 0.40),
c(0.23, 0.27, 0.45, 0.47, 0.50, 0.57),
c(0.38, 0.40, 0.43, 0.47, 0.51, 0.55)),
MTD = list(3, c(1, 2), -1), # -1 means "no MTD"
weight = c(1, 2, 1)
)
escalation_rule <- learn_escalation_rule(
J = 6, target = 0.25, epsilon = 0.04, delta = 0.1,
N_total = 36, N_cohort = 3, seed = 123,
rl_config = rl_config_set(iter = 1000),
rl_scenarios = my_scenarios
)
```
See the return of `compute_rl_scenarios()` for details.
## What to do if the learning is unstable
If an error occurs during reinforcement learning, please try the following.
- Use `checkpoint` before the error (see below)
- Change `seed` in `learn_escalation_rule()`
- Try Linux or WSL instead of Windows because Ray on Windows is currently in beta
- Reduce `sgd_minibatch_size` in `rl_config_set()` to `100L`
The obtained dose escalation rules may overfit some scenarios, so that the MTD cannot be estimated correctly at all in some other scenarios. In such cases, please try the following.
- Change `checkpoint` (see below)
- Change `seed` in `learn_escalation_rule()`
- Try custom scenarios
## How to use Escalation Rule Class
The `escalation_rule` above is an object of the Escalation Rule Class (R6). Here is a brief explanation of how to use it.
### Save the escalation rule
The obtained escalation rule can be saved using `saveRDS`, a standard R function.
```{r eval=FALSE}
saveRDS(escalation_rule, file = "escalation_rule.RDS")
```
To load it, use `readRDS`.
```{r eval=FALSE}
escalation_rule <- readRDS(file = "escalation_rule.RDS")
```
### Inputs of `learn_escalation_rule` function
The inputs passed to the `learn_escalation_rule` function can be retrieved as follows.
```{r eval=FALSE}
escalation_rule$input
```
### Obtain returns during reinforcement learning
The statistics of returns during reinforcement learning can be retrieved as follows.
```{r eval=FALSE}
escalation_rule$log
```
### Resume learning
Reinforcement learning can be resumed with the following function.
```{r eval=FALSE}
escalation_rule$resume_learning(iter = 100)
```
### Use checkpoint
Multiple checkpoints are created by `learn_escalation_rule` function. By default, the last checkpoint is used to build an escalation rule. If you want to build another escalation rule using another checkpoint, specify the directory name created by `learn_escalation_rule` function as follows.
```{r eval=FALSE}
another_escalation_rule <- EscalationRule$new(dir = "checkpoints/20250101_162633_00900")
```