--- title: "intro-to-RANSAC.Rmd" author: "Jadson Abreu" date: "2025-04-29" output: html_document --- title: "Introduction to the RANSAC Package" author: "Jadson Abreu" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to the RANSAC Package} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Introduction This package provides robust fitting methods for linear and nonlinear models using the RANSAC algorithm. # Basic Usage ## Linear Example ```r library(RANSAC) # Simulate data set.seed(123) x <- 1:20 y <- 2*x + rnorm(20) y[c(18,19,20)] <- y[c(18,19,20)] + 30 # Add outliers dados <- data.frame(x = x, y = y) # Fit using ransac_reg modelo <- ransac_reg(y ~ x, data = dados, n_min = 2, tol = 5) summary(modelo) # Simulate data set.seed(456) x <- seq(1, 10, length.out = 20) y <- 2 * x^1.5 + rnorm(20) y[c(18,19,20)] <- y[c(18,19,20)] + 50 dados <- data.frame(x = x, y = y) # Fit using ransac_nls modelo <- ransac_nls(y ~ a * x^b, data = dados, start = list(a = 1, b = 1.5), n_min = 3, tol = 10) summary(modelo)