## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # library(NaileR) # data(iris) # # intro_iris <- "A study measured various parts of iris flowers # from 3 different species: setosa, versicolor and virginica. # I will give you the results from this study. # You will have to identify what sets these flowers apart." # intro_iris <- gsub('\n', ' ', intro_iris) |> # stringr::str_squish() # # req_iris <- "Please explain what makes each species distinct. # Also, tell me which species has the biggest flowers, # and which species has the smallest. Is there any biological reason for this?" # req_iris <- gsub('\n', ' ', req_iris) |> # stringr::str_squish() # req_iris <- gsub('\n', ' ', req_iris) |> # stringr::str_squish() # # res_iris <- nail_catdes(iris, # num.var = 5, # model = "llama3.1", # introduction = intro_iris, # request = req_iris, # generate = TRUE) ## ----setup-------------------------------------------------------------------- res_iris <- readRDS(system.file("extdata", "res_iris.rds", package = "NaileR")) formatted_text <- strwrap(res_iris$response, width = 80) print(formatted_text) ## ----------------------------------------------------------------------------- library(NaileR) library(FactoMineR) data(waste) waste <- waste[-14] # no variability on this question set.seed(1) res_mca_waste <- MCA(waste, quali.sup = c(1,2,50:76), ncp = 35, level.ventil = 0.05, graph = FALSE) plot.MCA(res_mca_waste, choix = "ind", invisible = c("var", "quali.sup"), label = "none") res_hcpc_waste <- HCPC(res_mca_waste, nb.clust = 3, graph = FALSE) ## ----------------------------------------------------------------------------- don_clust_waste <- res_hcpc_waste$data.clust res_mca_waste <- MCA(don_clust_waste, quali.sup = c(1,2,50:77), ncp = 35, level.ventil = 0.05, graph = FALSE) plot.MCA(res_mca_waste, choix = "ind", invisible = c("var", "quali.sup"), label = "none", habillage = 77) ## ----eval=FALSE--------------------------------------------------------------- # intro_waste <- 'These data were collected # after a survey on food waste, # with participants describing their habits.' # intro_waste <- gsub('\n', ' ', intro_waste) |> # stringr::str_squish() # # req_waste <- 'Please summarize the characteristics of each group. # Then, give each group a new name, based on your conclusions. # Finally, give each group a grade between 0 and 10, # based on how wasteful they are with food: # 0 being "not at all", 10 being "absolutely".' # req_waste <- gsub('\n', ' ', req_waste) |> # stringr::str_squish() # # res_waste <- nail_catdes(don_clust_waste, # num.var = ncol(don_clust_waste), # introduction = intro_waste, # request = req_waste, # model = "llama3.1", # drop.negative = TRUE, # generate = TRUE) ## ----------------------------------------------------------------------------- res_waste <- readRDS(system.file("extdata", "res_waste.rds", package = "NaileR")) formatted_text <- strwrap(res_waste$response, width = 80) print(formatted_text)