Type: | Package |
Title: | Environmental Phillips Curve Analysis with Multiple Instrumental Variables and Networks |
Version: | 0.1.1 |
Date: | 2025-06-07 |
Description: | Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) <doi:10.1111/j.1468-0335.1958.tb00003.x>, transfer entropy by Schreiber (2000) <doi:10.1103/PhysRevLett.85.461>, and weak instrument tests by Stock and Yogo (2005) <doi:10.1017/CBO9780511614491.006>. |
License: | MIT + file LICENSE |
URL: | https://github.com/avishekb9/ManyIVsNets, https://avishekb9.github.io/ManyIVsNets/ |
BugReports: | https://github.com/avishekb9/ManyIVsNets/issues |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
Depends: | R (≥ 4.0.0) |
Imports: | dplyr, readr, igraph, ggplot2, ggraph, AER, lmtest, sandwich, magrittr |
Suggests: | testthat (≥ 3.0.0), rmarkdown, pkgdown, knitr, RTransferEntropy, tidyr, viridis, countrycode, spelling |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
Language: | en-US |
NeedsCompilation: | no |
Packaged: | 2025-06-19 18:07:52 UTC; avisek |
Author: | Avishek Bhandari [aut, cre, cph] |
Maintainer: | Avishek Bhandari <bavisek@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-06-23 11:20:02 UTC |
ManyIVsNets: Environmental Phillips Curve Analysis with Multiple Instrumental Variables and Networks
Description
Comprehensive toolkit for Environmental Phillips Curve analysis featuring multidimensional instrumental variable creation, transfer entropy causal discovery, network analysis, and state-of-the-art econometric methods. Implements geographic, technological, migration, geopolitical, financial, and natural risk instruments with robust diagnostics and visualization. Provides 24 different instrumental variable approaches with empirical validation. Methods based on Phillips (1958) doi:10.1111/j.1468-0335.1958.tb00003.x, transfer entropy by Schreiber (2000) doi:10.1103/PhysRevLett.85.461, and weak instrument tests by Stock and Yogo (2005) doi:10.1017/CBO9780511614491.006.
Author(s)
Maintainer: Avishek Bhandari bavisek@gmail.com [copyright holder]
See Also
Useful links:
Report bugs at https://github.com/avishekb9/ManyIVsNets/issues
Calculate Instrument Strength
Description
Calculate Instrument Strength
Usage
calculate_instrument_strength(data)
Arguments
data |
Enhanced EPC data |
Value
Data frame with instrument strength results
Conduct Transfer Entropy Analysis for Causal Discovery
Description
Conduct Transfer Entropy Analysis for Causal Discovery
Usage
conduct_transfer_entropy_analysis(data)
Arguments
data |
Enhanced EPC data with instruments |
Value
List containing transfer entropy matrix, network, and metadata
Examples
# Transfer entropy analysis (computationally intensive)
data(sample_epc_data)
te_results <- conduct_transfer_entropy_analysis(sample_epc_data)
Create Alternative State-of-the-Art Instruments
Description
Create Alternative State-of-the-Art Instruments
Usage
create_alternative_sota_instruments(data)
Arguments
data |
Enhanced EPC data |
Value
Data frame with alternative SOTA instruments
Create Composite Instruments using Factor Analysis
Description
Create Composite Instruments using Factor Analysis
Usage
create_composite_instruments(instruments)
Arguments
instruments |
Data frame with individual instruments |
Value
Enhanced data frame with composite instruments
Create Comprehensive Network Plots
Description
Create Comprehensive Network Plots
Usage
create_comprehensive_network_plots(
te_results,
te_iv_results,
data,
strength_results,
output_dir = tempdir()
)
Arguments
te_results |
Transfer entropy results |
te_iv_results |
Transfer entropy IV results |
data |
Enhanced EPC data |
strength_results |
Instrument strength results |
output_dir |
Directory to save plots (optional) |
Value
List of plot objects
Create Comprehensive Results Table
Description
Create Comprehensive Results Table
Create Comprehensive Results Table
Usage
create_comprehensive_results_table(models, diagnostics)
create_comprehensive_results_table(models, diagnostics)
Arguments
models |
List of fitted models |
diagnostics |
List of diagnostic results |
Value
Data frame with comprehensive results
Data frame with comprehensive results
Create enhanced test data with all required variables
Description
Create enhanced test data with all required variables
Usage
create_enhanced_test_data()
Value
Data frame with enhanced test data
Create Publication Summary
Description
Create Publication Summary
Usage
create_publication_summary(results_table, strength_results, te_results)
Arguments
results_table |
Main results table |
strength_results |
Instrument strength results |
te_results |
Transfer entropy results |
Value
Character vector with summary text
Create Real Multidimensional Instruments from Economic Data
Description
Create Real Multidimensional Instruments from Economic Data
Usage
create_real_instruments_from_data(epc_data)
Arguments
epc_data |
Data frame containing EPC data with country and year columns |
Value
Data frame with created instruments
Examples
# Create instruments using built-in sample data
data(sample_epc_data)
instruments <- create_real_instruments_from_data(sample_epc_data)
head(instruments)
Create Transfer Entropy-Based Instruments
Description
Create Transfer Entropy-Based Instruments
Usage
create_te_based_instruments(data, te_results)
Arguments
data |
EPC data |
te_results |
Transfer entropy analysis results |
Value
List with enhanced data and network centralities
Create test EPC data for testing
Description
Create test EPC data for testing
Usage
create_test_epc_data()
Value
Data frame with test EPC data
Create test instruments for testing
Description
Create test instruments for testing
Usage
create_test_instruments()
Value
Data frame with test instruments
Export Comprehensive Results to CSV
Description
Export Comprehensive Results to CSV
Usage
export_comprehensive_results(
models,
diagnostics,
strength_results,
te_results,
instruments,
centralities,
output_dir = tempdir()
)
Arguments
models |
List of fitted models |
diagnostics |
List of diagnostic results |
strength_results |
Instrument strength results |
te_results |
Transfer entropy results |
instruments |
Created instruments data |
centralities |
Country network centralities |
output_dir |
Directory to save files |
Value
No return value, called for side effects. Creates multiple CSV files and one text summary file in the specified output directory: Table_1_Complete_EPC_Results_From_Scratch.csv (main Environmental Phillips Curve analysis results), Table_2_Instrument_Strength_All_Types_From_Scratch.csv (instrument strength statistics), Table_3_Transfer_Entropy_Matrix.csv (transfer entropy matrix), Table_4_Created_Real_Instruments.csv (created instrumental variables), Table_5_Country_Network_Centralities.csv (network centrality measures), Table_6_IV_Diagnostics_Complete.csv (IV diagnostic tests), and Publication_Summary_Complete_From_Scratch.txt (comprehensive summary).
Load and Clean EPC Data
Description
Load and Clean EPC Data
Usage
load_epc_data_corrected(file_path = "epc_data_new_ar5_indicators.csv")
Arguments
file_path |
Path to the EPC data CSV file |
Value
Cleaned EPC data frame
Examples
# Load sample EPC data from package
sample_file <- system.file("extdata", "sample_epc_data.csv", package = "ManyIVsNets")
if (file.exists(sample_file)) {
epc_data <- load_epc_data_corrected(sample_file)
head(epc_data)
}
# Example with external file (only runs if file exists)
if (file.exists("your_epc_data.csv")) {
epc_data <- load_epc_data_corrected("your_epc_data.csv")
}
Merge EPC Data with Created Instruments
Description
Merge EPC Data with Created Instruments
Usage
merge_epc_with_created_instruments(epc_data, instruments)
Arguments
epc_data |
EPC data frame |
instruments |
Instruments data frame |
Value
Enhanced data frame with merged instruments
Create Country Network Visualization by Income Classification
Description
Create Country Network Visualization by Income Classification
Usage
plot_country_income_network(country_network, output_dir = NULL)
Arguments
country_network |
igraph network object |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Create Cross-Income CO2 Growth Nexus Visualization
Description
Create Cross-Income CO2 Growth Nexus Visualization
Usage
plot_cross_income_co2_nexus(data, output_dir = NULL)
Arguments
data |
Enhanced EPC data |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Create Instrument Causal Pathways Network
Description
Create Instrument Causal Pathways Network
Usage
plot_instrument_causal_pathways(data, output_dir = NULL)
Arguments
data |
Enhanced EPC data |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Create Instrument Strength Comparison Visualization
Description
Create Instrument Strength Comparison Visualization
Usage
plot_instrument_strength_comparison(strength_results, output_dir = NULL)
Arguments
strength_results |
Data frame with instrument strength results |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Create Migration Impact Visualization
Description
Create Migration Impact Visualization
Usage
plot_migration_impact(data, output_dir = NULL)
Arguments
data |
Enhanced EPC data |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Create Regional Network Visualization
Description
Create Regional Network Visualization
Usage
plot_regional_network(data, output_dir = NULL)
Arguments
data |
Enhanced EPC data |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Create Transfer Entropy Network Visualization
Description
Create Transfer Entropy Network Visualization
Usage
plot_transfer_entropy_network(te_results, output_dir = NULL)
Arguments
te_results |
Transfer entropy analysis results |
output_dir |
Directory to save plots (optional) |
Value
ggplot object
Run Complete EPC Analysis Pipeline
Description
Run Complete EPC Analysis Pipeline
Usage
run_complete_epc_analysis(data_file = NULL, output_dir = tempdir())
Arguments
data_file |
Path to EPC data file (optional) |
output_dir |
Directory for outputs |
Value
List with all analysis results
Run Comprehensive EPC Models
Description
Run Comprehensive EPC Models
Usage
run_comprehensive_epc_models(data)
Arguments
data |
Enhanced EPC data with all instruments |
Value
List of fitted models
Run Comprehensive IV Diagnostics
Description
Run Comprehensive IV Diagnostics
Run Comprehensive IV Diagnostics
Usage
run_comprehensive_iv_diagnostics(models)
run_comprehensive_iv_diagnostics(models)
Arguments
models |
List of fitted models |
Value
List of diagnostic results
List of diagnostic results
Sample Environmental Phillips Curve Data
Description
A dataset containing Environmental Phillips Curve variables for 5 countries from 1991 to 2021, used for testing and demonstration purposes.
Usage
sample_epc_data
Format
A data frame with 155 rows and 9 variables:
- country
Country name
- year
Year (1991-2021)
- CO2_per_capita
CO2 emissions per capita
- UR
Total unemployment rate
- URF
Female unemployment rate
- URM
Male unemployment rate
- PCGDP
Per capita GDP
- Trade
Trade openness
- RES
Renewable energy share
Source
Generated for package testing and demonstration