Package 'MKpower'

April 8, 2024
Version 0.9
Date 2024-04-05
Title Power Analysis and Sample Size Calculation
Author Matthias Kohl [aut, cre] (https://orcid.org/0000-0001-9514-8910)
Maintainer Matthias Kohl Matthias.Kohl@stamats.de
Depends $R(>=3.5 .0)$
Imports stats, matrixTests(>=0.2), ggplot2, MKdescr, MKinfer(>=0.4), qqplotr, coin, mvtnorm

Suggests knitr, rmarkdown
VignetteBuilder knitr
Description Power analysis and sample size calculation for Welch and Hsu (Hed-
derich and Sachs (2018), ISBN:978-3-662-56657-2) t-tests including Monte-Carlo simulations of empirical power and type-I-error. Power and sample size calculation for Wilcoxon rank sum and signed rank tests via Monte-Carlo simulations. Power and sample size required for the evaluation of a diagnostic test(-system) (Flahault et al. (2005), doi:10.1016/j.jclinepi.2004.12.009; Dobbin and Simon (2007), doi:10.1093/biostatistics/kxj036) as well as for a single proportion (Fleiss et al. (2003), ISBN:978-0-471-52629-
2; Piegorsch (2004), doi:10.1016/j.csda.2003.10.002; Thulin (2014), doi:10.1214/14ejs909), comparing two negative binomial rates (Zhu and Lakkis (2014), doi:10.1002/sim.5947), ANCOVA (Shieh (2020), doi:10.1007/s11336-019-09692-3), reference ranges (JennenSteinmetz and Wellek (2005), doi:10.1002/sim.2177), and multiple primary endpoints (Sozu et al. (2015), ISBN:978-3-319-22005-5).
License LGPL-3
URL https://github.com/stamats/MKpower
NeedsCompilation no
Repository CRAN
Date/Publication 2024-04-07 22:33:14 UTC

R topics documented:

MKpower-package 2
hist 3
power.ancova 4
power.diagnostic.test 6
power.hsu.t.test 8
power.mpe.atleast.one 10
power.mpe.known.var 12
power.mpe.unknown.var 14
power.nb.test 16
power.prop1.test 18
power.welch.t.test 19
print.power.mpe.test 21
qqunif 22
sim.power.t.test 24
sim.power.wilcox.test 26
sim.ssize.wilcox.test 28
ssize.pcc 31
ssize.propCI 32
ssize.reference.range 33
volcano 37
Index 39
MKpower-package

Description

Power analysis and sample size calculation for Welch and Hsu (Hedderich and Sachs (2018), ISBN:978-3-662-56657-2) t-tests including Monte-Carlo simulations of empirical power and type-I-error. Power and sample size calculation for Wilcoxon rank sum and signed rank tests via MonteCarlo simulations. Power and sample size required for the evaluation of a diagnostic test(-system) (Flahault et al. (2005), doi:10.1016/j.jclinepi.2004.12.009; Dobbin and Simon (2007), doi:10.1093/biostatistics/kxj036) as well as for a single proportion (Fleiss et al. (2003), ISBN:978-0-471-52629-2; Piegorsch (2004), doi:10.1016/j.csda.2003.10.002; Thulin (2014), doi:10.1214/14-ejs909), comparing two negative binomial rates (Zhu and Lakkis (2014), doi:10.1002/sim.5947), ANCOVA (Shieh (2020), doi:10.1007/s11336-019-09692-3), reference ranges (Jennen-Steinmetz and Wellek (2005), doi:10.1002/sim.2177), and multiple primary endpoints (Sozu et al. (2015), ISBN:978-3-319-22005-5).

Details

library(MKpower)

Author(s)

Matthias Kohl https://www.stamats.de
Maintainer: Matthias Kohl matthias.kohl@stamats.de
hist Histograms

Description

Produce histograms for simulations of power and type-I-error of tests.

Usage

\#\# S3 method for class 'sim.power.ttest'
hist(x, color.hline = "orange", ...)
\#\# S3 method for class 'sim.power.wtest'
hist(x, color.hline = "orange", ...)

Arguments

x	object of class sim. power.ttest.
color.hline	color of horizontal line indicating uniform distribution of p values.
\ldots	further arguments that may be passed through).

Details

The plot generates a ggplot2 object that is shown.
Missing values are handled by the ggplot2 functions.

Value

Object of class gg and ggplot.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

See Also

hist

Examples

```
res1 <- sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
    ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
hist(res1)
res2 <- sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,
    ny = 6, ry = function(x) rnorm(x, mean = 2),
    ry.H0 = rnorm)
hist(res2)
```

 power.ancova Power Calculation for ANCOVA

Description

Compute sample size for ANCOVA.

Usage

power.ancova(n = NULL, mu = NULL, var = 1, nr.covs = 1L, group.ratio = NULL, contr.mat $=$ NULL, sig.level $=0.05$, power $=$ NULL, n.max $=1000 \mathrm{~L}$, rel.tol $=$. Machine\$double.eps^0.25)

Arguments

$\mathrm{n} \quad$ vector of sample sizes per groups.
$\mathrm{mu} \quad$ vector of mean values of the groups.
var error variance.
nr .covs number of covariates (larger or equal than 1).
group.ratio vector of group sizes relative to group 1; i.e., first entry should always be one. If NULL, a balanced design is used.
contr.mat matrix of contrasts (number of columns must be idential to number of groups). If NULL, standard ANCOVA contrasts are used; see examples below.
sig.level significance level (type I error probability)
power power of test (1 minus type II error probability)
n.max maximum sample size considered in the computations.
rel.tol relative tolerance passed to function integrate.

Details

Exactly one of the parameters n and power must be passed as NULL, and that parameter is determined from the other.

The function includes an implementation of the exact approach of Shieh (2020). It is based on the code provided in the supplement of Shieh (2020), but uses integrate instead of the trapezoid rule and uniroot for finding the required sample size.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with a note element.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

G. Shieh (2020). Power Analysis and Sample Size Planning in ANCOVA Designs. Psychometrika 85:101-120. doi:10.1007/s11336019096923.
S.E. Maxwell and H.D. Delaney (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

See Also

power.anova.test, power.t.test

Examples

```
## Default matrix of contrasts
## 3 groups
cbind(rep(1,2), -diag(2))
## 4 groups
cbind(rep(1,3), -diag(3))
## Table 1 in Shieh (2020)
power.ancova(mu=c(400, 450, 500), var = 9900, power = 0.8)
power.ancova(n = rep(63/3, 3), mu=c(400, 450, 500), var = 9900)
power.ancova(mu=c(400, 450, 500), var = 9900, power = 0.8, nr.covs = 10)
power.ancova(n = rep (72/3, 3), mu=c(400, 450, 500), var = 9900, nr.covs = 10)
## Table 2 in Shieh (2020)
power.ancova(mu=c(400, 450, 500), var = 7500, power = 0.8)
power.ancova(n = rep (48/3, 3), mu=c(400, 450, 500), var = 7500)
power.ancova(mu=c(400, 450, 500), var = 7500, power = 0.8, nr.covs = 10)
power.ancova(n = rep(60/3, 3), mu=c(400, 450, 500), var = 7500, nr.covs = 10)
## Table 3 in Shieh (2020)
power.ancova(mu=c(400, 450, 500), var = 1900, power = 0.8)
power.ancova(n = rep(18/3, 3), mu=c(400, 450, 500), var = 1900)
power.ancova(mu=c (400, 450, 500), var = 1900, power = 0.8, nr.covs = 10)
power.ancova(n = rep (27/3, 3), mu=c(400, 450, 500), var = 1900, nr.covs = 10)
## ANOVA approach for Table 1-3
power.anova.test(groups = 3, between.var = var(c(400, 450, 500)),
    within.var = 10000, power = 0.8)
power.anova.test(n = 63/3, groups = 3, between.var = var(c(400, 450, 500)),
    within.var = 10000)
```

```
## Table 4 in Shieh (2020)
power.ancova(mu=c(410, 450, 490), var = 9900, power = 0.8)
power.ancova(n = rep(96/3, 3), mu=c(410, 450, 490), var = 9900)
power.ancova(mu=c(410, 450, 490), var = 9900, power = 0.8, nr.covs = 10)
power.ancova(n = rep(105/3, 3), mu=c(410, 450, 490), var = 9900, nr.covs = 10)
## Table 5 in Shieh (2020)
power.ancova(mu=c(410, 450, 490), var = 7500, power = 0.8)
power.ancova(n = rep(72/3, 3), mu=c(410, 450, 490), var = 7500)
power.ancova(mu=c(410, 450, 490), var = 7500, power = 0.8, nr.covs = 10)
power.ancova(n = rep(84/3, 3), mu=c(410, 450, 490), var = 7500, nr.covs = 10)
## Table 6 in Shieh (2020)
power.ancova(mu=c(410, 450, 490), var = 1900, power = 0.8)
power.ancova(n = rep(24/3, 3), mu=c(410, 450, 490), var = 1900)
power.ancova(mu=c(410, 450, 490), var = 1900, power = 0.8, nr.covs = 10)
power.ancova(n = rep(33/3, 3), mu=c(410, 450, 490), var = 1900, nr.covs = 10)
## ANOVA approach for Table 4-6
power.anova.test(groups = 3, between.var = var(c(410, 450, 490)),
    within.var = 10000, power = 0.8)
power.anova.test(n = 96/3, groups = 3, between.var = var(c(410, 450, 490)),
    within.var = 10000)
##################################################################################
## Example from Maxwell and Delaney (2004) according to Shieh (2020)
#################################################################################
## ANCOVA (balanced design)
power.ancova(n = rep(30/3, 3), mu=c(7.5366, 11.9849, 13.9785), var = 29.0898)
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.8)
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.9)
## ANOVA
power.anova.test(n = 30/3, groups = 3, between.var = var(c(7.5366, 11.9849, 13.9785)),
    within.var = 29.0898)
power.anova.test(groups = 3, between.var = var(c(7.5366, 11.9849, 13.9785)),
    within.var = 29.0898, power = 0.8)
power.anova.test(groups = 3, between.var = var(c(7.5366, 11.9849, 13.9785)),
    within.var = 29.0898, power = 0.9)
## ANCOVA - imbalanced design
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.8,
    group.ratio = c(1, 1.25, 1.5))
power.ancova(n = c(13, 16, 19), mu=c(7.5366, 11.9849, 13.9785), var = 29.0898,
    group.ratio = c(1, 1.25, 1.5))
power.ancova(mu=c(7.5366, 11.9849, 13.9785), var = 29.0898, power = 0.8,
    group.ratio = c(1, 0.8, 2/3))
power.ancova(n = c(17, 14, 12), mu=c(7.5366, 11.9849, 13.9785), var = 29.0898,
    group.ratio = c(1, 0.8, 2/3))
```


Description

Compute sample size, power, delta, or significance level of a diagnostic test for an expected sensititivy or specificity.

Usage

power.diagnostic.test(sens = NULL, spec = NULL, $\mathrm{n}=\mathrm{NULL}$, delta $=$ NULL, sig.level $=0.05$, power $=$ NULL, prev $=$ NULL, method = c("exact", "asymptotic"), NMAX = 1e4)

Arguments

sens Expected sensitivity; either sens or spec has to be specified.
spec Expected specificity; either sens or spec has to be specified.
$\mathrm{n} \quad$ Number of cases if sens and number of controls if spec is given.
delta sens-delta resp. spec-delta is used as lower confidence limit
sig.level Significance level (Type I error probability)
power Power of test (1 minus Type II error probability)
prev Expected prevalence, if NULL prevalence is ignored which means prev $=0.5$ is assumed.
method exact or asymptotic formula; default "exact".
NMAX Maximum sample size considered in case method = "exact".

Details

Either sens or spec has to be specified which leads to computations for either cases or controls.
Exactly one of the parameters n, delta, sig.level, and power must be passed as NULL, and that parameter is determined from the others. Notice that sig. level has a non-NULL default so NULL must be explicitly passed if you want to compute it.

The computations are based on the formulas given in the Appendix of Flahault et al. (2005). Please be careful, in Equation (A1) the numerator should be squared, in equation (A2) and (A3) the second exponent should be $n-\mathrm{i}$ and not i .
As noted in Chu and Cole (2007) power is not a monotonically increasing function in n but rather saw toothed (see also Chernick and Liu (2002)). Hence, in our calculations we use the more conservative approach II); i.e., the minimum sample size n such that the actual power is larger or equal power andsuch that for any sample size larger than n it also holds that the actual power is larger or equal power.

Value

Object of class "power. htest", a list of the arguments (including the computed one) augmented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

A. Flahault, M. Cadilhac, and G. Thomas (2005). Sample size calculation should be performed for design accuracy in diagnostic test studies. Journal of Clinical Epidemiology, 58(8):859-862.
H. Chu and S.R. Cole (2007). Sample size calculation using exact methods in diagnostic test studies. Journal of Clinical Epidemiology, 60(11):1201-1202.
M.R. Chernick amd C.Y. Liu (2002). The saw-toothed behavior of power versus sample size and software solutions: single binomial proportion using exact methods. Am Stat, 56:149-155.

See Also

uniroot

Examples

```
## see n2 on page 1202 of Chu and Cole (2007)
power.diagnostic.test(sens = 0.99, delta = 0.14, power = 0.95) # 40
power.diagnostic.test(sens = 0.99, delta = 0.13, power = 0.95) # 43
power.diagnostic.test(sens = 0.99, delta = 0.12, power = 0.95) # 47
power.diagnostic.test(sens = 0.98, delta = 0.13, power = 0.95) # 50
power.diagnostic.test(sens = 0.98, delta = 0.11, power = 0.95) # 58
## see page 1201 of Chu and Cole (2007)
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 93) ## 0.957
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 93, power = 0.95,
    sig.level = NULL) ## 0.0496
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 102) ## 0.968
power.diagnostic.test(sens = 0.95, delta = 0.1, n = 102, power = 0.95,
    sig.level = NULL) ## 0.0471
## yields 102 not 93!
power.diagnostic.test(sens = 0.95, delta = 0.1, power = 0.95)
```


Description

Compute the power of the two-sample Hsu t test, or determine parameters to obtain a target power; see Section 7.4.4 in Hedderich and Sachs (2016).

Usage

power.hsu.t.test($\mathrm{n}=$ NULL, delta $=$ NULL, $\mathrm{sd} 1=1$, sd2 = 1, sig.level = 0.05, power $=$ NULL, alternative $=c(" t w o . s i d e d ", ~ " o n e . s i d e d ")$, strict $=$ FALSE, tol $=$.Machine\$double.eps^0.25)

Arguments

$\mathrm{n} \quad$ number of observations (per group)
delta (expected) true difference in means
sd1 (expected) standard deviation of group 1
$\mathrm{sd} 2 \quad$ (expected) standard deviation of group 2
sig.level significance level (Type I error probability)
power power of test (1 minus Type II error probability)
alternative one- or two-sided test. Can be abbreviated.
strict use strict interpretation in two-sided case
tol numerical tolerance used in root finding, the default providing (at least) four significant digits.

Details

Exactly one of the parameters n, delta, power, $s d 1$, sd2 and sig. level must be passed as NULL, and that parameter is determined from the others. Notice that the last three have non-NULL defaults, so NULL must be explicitly passed if you want to compute them.
If strict = TRUE is used, the power will include the probability of rejection in the opposite direction of the true effect, in the two-sided case. Without this the power will be half the significance level if the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Note

The function and its documentation was adapted from power.t.test implemented by Peter Dalgaard and based on previous work by Claus Ekstroem.
uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2016.

See Also

power.welch.t.test, power.t.test, t.test, uniroot

Examples

```
## more conservative than classical or Welch t-test
power.hsu.t.test(n = 20, delta = 1)
power.hsu.t.test(power = .90, delta = 1)
power.hsu.t.test(power = .90, delta = 1, alternative = "one.sided")
## sd1 = 0.5, sd2 = 1
power.welch.t.test(delta = 0.5, sd1 = 0.5, sd2 = 1, power = 0.9)
power.hsu.t.test(delta = 0.5, sd1 = 0.5, sd2 = 1, power = 0.9)
if(require(MKinfer)){
## empirical check
M <- 10000
ps <- numeric(M)
for(i in seq_len(M)){
    x <- rnorm(55, mean = 0, sd = 0.5)
    y <- rnorm(55, mean = 0.5, sd = 1.0)
    ps[i] <- hsu.t.test(x, y)$p.value
}
## empirical power
sum(ps < 0.05)/M
}
```

power.mpe. atleast.one Power for at least One Endpoint with Known Covariance

Description

The function calculates either sample size or power for continuous multiple primary endpoints for at least one endpoint with known covariance.

Usage

power.mpe.atleast.one (K, $\mathrm{n}=$ NULL, delta $=$ NULL, Sigma, SD, rho, sig.level = 0.05/K, power $=$ NULL, $\mathrm{n} . \max =1 \mathrm{e} 5$, tol $=$. Machine\$double.eps^0.25)

Arguments

K
number of endpoints
n optional: sample size
delta expected effect size
Sigma
A covariance of known matrix

SD	known standard deviations (length K)
rho	known correlations (length $0.5 * K *(K-1))$
sig. level	Significance level (Type I error probability)
power	optional: Power of test (1 minus Type II error probability)
n.max	upper end of the interval to be search for n via uniroot.
tol	The desired accuracy

Details

The function can be used to either compute sample size or power for continuous multiple primary endpoints with known covariance where a significant difference for at least one endpoint is expected. The implementation is based on the formulas given in the references below.
The null hypothesis reads $\mu_{T k}-\mu_{C k} \leq 0$ for all $k \in\{1, \ldots, K\}$ where $T \mathrm{k}$ is treatment k, Ck is control k and K is the number of co-primary endpoints.
One has to specify either n or power, the other parameter is determined. Moreover, either covariance matrix Sigma or standard deviations SD and correlations rho must be given.

Value

Object of class power.mpe.test, a list of arguments (including the computed one) augmented with method and note elements.

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl Matthias.Kohl@stamats.de

References

Sugimoto, T. and Sozu, T. and Hamasaki, T. (2012). A convenient formula for sample size calculations in clinical trials with multiple co-primary continuous endpoints. Pharmaceut. Statist., 11: 118-128. doi:10.1002/pst. 505
Sozu, T. and Sugimoto, T. and Hamasaki, T. and Evans, S.R. (2015). Sample Size Determination in Clinical Trials with Multiple Endpoints. Springer Briefs in Statistics, ISBN 978-3-319-22005-5.

Examples

```
## compute power
power.mpe.atleast.one(K = 2, delta = c(0.2,0.2), Sigma = diag(c(1,1)), power = 0.8)
## compute sample size
power.mpe.atleast.one(K = 2, delta = c(0.2,0.2), Sigma = diag(c(2,2)), power = 0.9)
## known covariance matrix
Sigma <- matrix(c(1.440, 0.840, 1.296, 0.840,
```

```
    0.840, 1.960, 0.168, 1.568,
    1.296, 0.168, 1.440, 0.420,
    0.840, 1.568, 0.420, 1.960), ncol = 4)
## compute power
power.mpe.atleast.one(K = 4, n = 60, delta = c(0.5, 0.75, 0.5, 0.75), Sigma = Sigma)
## equivalent: known SDs and correlation rho
power.mpe.atleast.one(K = 4, n = 60, delta = c(0.5, 0.75, 0.5, 0.75),
    SD = c(1.2, 1.4, 1.2, 1.4),
    rho = c(0.5,0.9,0.5,0.1,0.8,0.25))
```

power.mpe.known.var Multiple Co-Primary Endpoints with Known Covariance

Description

The function calculates either sample size or power for continuous multiple co-primary endpoints with known covariance.

Usage

power.mpe.known.var(K, $\mathrm{n}=\mathrm{NULL}$, delta $=$ NULL, Sigma, SD, rho, sig.level $=0.05$, power $=$ NULL, $n . \max =1 e 5$, tol $=$. Machine\$double.eps^0.25)

Arguments

K
$\mathrm{n} \quad$ optional: sample size
delta expected effect size (length K)
Sigma known covariance matrix (dimension K x K)
SD known standard deviations (length K)
rho known correlations (length $0.5 * \mathrm{~K} *(\mathrm{~K}-1)$)
sig.level significance level (Type I error probability)
power optional: power of test (1 minus Type II error probability)
n.max upper end of the interval to be search for n via uniroot.
tol the desired accuracy for uniroot.

Details

The function can be used to either compute sample size or power for continuous multiple co-primary endpoints with known covariance where a multivariate normal distribution is assumed. The implementation is based on the formulas given in the references below.
The null hypothesis reads $\mu_{T k}-\mu_{C k} \leq 0$ for at least one $k \in\{1, \ldots, K\}$ where $T k$ is treatment k , Ck is control k and K is the number of co-primary endpoints.
One has to specify either n or power, the other parameter is determined. Moreover, either covariance matrix Sigma or standard deviations SD and correlations rho must be given.

Value

Object of class power.mpe.test, a list of arguments (including the computed one) augemented with method and note elements.

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl Matthias.Kohl@stamats.de

References

Sugimoto, T. and Sozu, T. and Hamasaki, T. (2012). A convenient formula for sample size calculations in clinical trials with multiple co-primary continuous endpoints. Pharmaceut. Statist., 11: 118-128. doi:10.1002/pst. 505

Sozu, T. and Sugimoto, T. and Hamasaki, T. and Evans, S.R. (2015). Sample Size Determination in Clinical Trials with Multiple Endpoints. Springer Briefs in Statistics, ISBN 978-3-319-22005-5.

See Also

power.mpe. unknown.var

Examples

```
## compute power
power.mpe.known.var(K = 2, n = 20, delta = c(1,1), Sigma = diag(c(1,1)))
## compute sample size
power.mpe.known.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,
    sig.level = 0.025)
## known covariance matrix
Sigma <- matrix(c(1.440, 0.840, 1.296, 0.840,
    0.840, 1.960, 0.168, 1.568,
    1.296, 0.168, 1.440, 0.420,
    0.840, 1.568, 0.420, 1.960), ncol = 4)
## compute power
power.mpe.known.var(K = 4, n = 60, delta = c(0.5, 0.75, 0.5, 0.75), Sigma = Sigma)
## equivalent: known SDs and correlation rho
power.mpe.known.var(K = 4, n = 60,delta = c(0.5, 0.75, 0.5, 0.75),
    SD = c(1.2, 1.4, 1.2, 1.4),
    rho = c(0.5, 0.9, 0.5, 0.1, 0.8, 0.25))
```

power.mpe. unknown.var Multiple Co-Primary Endpoints with Unknown Covariance

Description

The function calculates either sample size or power for continuous multiple co-primary endpoints with unknown covariance.

Usage

power.mpe.unknown. $\operatorname{var}(\mathrm{K}, \mathrm{n}=\mathrm{NULL}$, delta $=$ NULL, Sigma, $S D$, rho, sig.level $=0.05$, power $=$ NULL, $M=10000$, n.min $=$ NULL, n.max $=$ NULL, tol $=$.Machine\$double.eps^ 0.25 , use.uniroot $=$ TRUE)

Arguments

K	number of co-primary endpoints
n	optional: sample size
delta	expected effect size (length K)
Sigma	unknown covariance matrix (dimension K x K)
SD	unknown standard deviations (length K)
rho	unknown correlations (length $0.5 * \mathrm{~K} *(\mathrm{~K}-1)$)
sig.level	significance level (Type I error probability)
power	optional: power of test (1 minus Type II error probability)
M	Number of replications for the required simulations.
n. min	Starting point of search interval for sample size
$\mathrm{n} . \max$	End point of search interval for sample size, must be larger than $\mathrm{n} . \mathrm{min}$
tol	the desired accuracy for uniroot
use.uniroot	Finds one root of one equation

Details

The function can be used to either compute sample size or power for continuous multiple co-primary endpoints with unknown covariance. The implementation is based on the formulas given in the references below.
The null hypothesis reads $\mu_{T k}-\mu_{C k} \leq 0$ for at least one $k \in\{1, \ldots, K\}$ where Tk is treatment k , Ck is control k and K is the number of co-primary endpoints.
One has to specify either n or power, the other parameter is determined. An approach to calculate sample size n, is to first call power.mpe.known.var and use the result as n.min. The input for n.max must be larger then n.min. Moreover, either covariance matrix Sigma or standard deviations SD and correlations rho must be given.
The sample size is calculated by simulating Wishart distributed random matrices, hence the results include a certain random variation.

Value

Object of class power.mpe. test, a list of arguments (including the computed one) augmented with method and note elements.

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl <Matthias.Kohl@stamats. de>

References

Sugimoto, T. and Sozu, T. and Hamasaki, T. (2012). A convenient formula for sample size calculations in clinical trials with multiple co-primary continuous endpoints. Pharmaceut. Statist., 11: 118-128. doi:10.1002/pst. 505
Sozu, T. and Sugimoto, T. and Hamasaki, T. and Evans, S.R. (2015). Sample Size Determination in Clinical Trials with Multiple Endpoints. Springer Briefs in Statistics, ISBN 978-3-319-22005-5.

See Also

power.mpe.known.var

Examples

```
## compute power
## Not run:
power.mpe.unknown.var(K = 2, n = 20, delta = c(1,1), Sigma = diag(c(1,1)))
## To compute sample size, first assume covariance as known
power.mpe.known.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,
    sig.level = 0.025)
## The value of n, which is 51, is used as n.min and n.max must be larger
## then n.min so we try 60.
power.mpe.unknown.var(K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,
    sig.level = 0.025, n.min = 51, n.max = 60)
## More complex example with unknown covariance matrix assumed to be
Sigma <- matrix(c(1.440, 0.840, 1.296, 0.840,
    0.840, 1.960, 0.168, 1.568,
    1.296, 0.168, 1.440, 0.420,
    0.840, 1.568, 0.420, 1.960), ncol = 4)
## compute power
power.mpe.unknown.var(K = 4, n = 90, delta = c(0.5, 0.75, 0.5, 0.75), Sigma = Sigma)
## equivalent: unknown SDs and correlation rho
power.mpe.unknown.var (K = 4, n = 90, delta = c(0.5, 0.75, 0.5, 0.75),
    SD = c(1.2, 1.4, 1.2, 1.4),
    rho =c(0.5, 0.9, 0.5, 0.1, 0.8, 0.25))
```

```
## End(Not run)
```

power.nb.test Power Calculation for Comparing Two Negative Binomial Rates

Description

Compute sample size or power for comparing two negative binomial rates.

Usage

power.nb.test($\mathrm{n}=\mathrm{NULL}, \mathrm{mu} 0, \mathrm{mu}$, RR, duration $=1$, theta, ssize.ratio $=1$, sig. level $=0.05$, power $=$ NULL, alternative $=c(" t w o . s i d e d ", " o n e . s i d e d ")$, approach = 3)

Arguments

n	Sample size for group 0 (control group).
mu0	expected rate of events per time unit for group 0
mu1	expected rate of events per time unit for group 1
RR	ratio of expected event rates: mu1/mu0
duration	(average) treatment duration
theta	theta parameter of negative binomial distribution; see rnegbin
ssize.ratio	ratio of sample sizes: n1/n where n1 is sample size of group 1
sig.level	Significance level (Type I error probability)
power	Power of test (1 minus Type II error probability)
alternative	one- or two-sided test
approach	1,2, or 3; see Zhu and Lakkis (2014).

Details

Exactly one of the parameters n and power must be passed as NULL, and that parameter is determined from the other.

The computations are based on the formulas given in Zhu and Lakkis (2014). Please be careful, as we are using a slightly different parametrization (theta $=1 / \mathrm{k}$).
Zhu and Lakkis (2014) based on their simulation studies recommend to use their approach 2 or 3 .

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with a note element.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

H. Zhu and H. Lakkis (2014). Sample size calculation for comparing two negative binomial rates. Statistics in Medicine, 33:376-387.

See Also

rnegbin, glm.nb

Examples

```
## examples from Table I in Zhu and Lakkis (2014)
## theta = 1/k, RR = rr, mu0 = r0, duration = mu_t
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 0.8, RR = 0.85, theta = 1/0.4, duration = 0.75, power = 0.8, approach = 3)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 1)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 2)
power.nb.test(mu0 = 1.4, RR = 1.15, theta = 1/1.5, duration = 0.75, power = 0.8, approach = 3)
```

\#\# examples from Table II in Zhu and Lakkis (2014) - seem to be total sample sizes
\#\# can reproduce the results with mu_t $=1.0$ (not 0.7!)
power.nb.test(mu0 $=2.0, R R=0.5$, theta $=1$, duration $=1.0$, ssize. ratio $=1$,
power $=0.8$, approach $=1$)
power.nb.test(mu0 $=2.0, R R=0.5$, theta $=1$, duration $=1.0$, ssize.ratio $=1$,
power $=0.8$, approach $=2$)
power.nb.test(mu0 $=2.0, R R=0.5$, theta $=1$, duration $=1.0$, ssize. ratio $=1$,
power $=0.8$, approach $=3$)
power.nb.test(mu0 $=10.0, R R=1.5$, theta $=1 / 5$, duration $=1.0$, ssize. ratio $=3 / 2$,
power $=0.8$, approach $=1$)
power.nb.test (mu0 $=10.0, R R=1.5$, theta $=1 / 5$, duration $=1.0$, ssize.ratio $=3 / 2$,
power $=0.8$, approach $=2$)
power.nb.test(mu0 $=10.0, R R=1.5$, theta $=1 / 5$, duration $=1.0$, ssize. ratio $=3 / 2$,
power = 0.8, approach = 3)
\#\# examples from Table III in Zhu and Lakkis (2014)
power.nb.test (mu0 $=5.0, R R=2.0$, theta $=1 / 0.5$, duration $=1$, power $=0.8$, approach $=1$)
power.nb.test (mu0 $=5.0, R R=2.0$, theta $=1 / 0.5$, duration $=1$, power $=0.8$, approach $=2$)
power.nb.test (mu0 $=5.0, R R=2.0$, theta $=1 / 0.5$, duration $=1$, power $=0.8$, approach $=3$)
\#\# examples from Table IV in Zhu and Lakkis (2014)
power.nb.test (mu0 $=5.9 / 3, \mathrm{RR}=0.4$, theta $=0.49$, duration $=3$, power $=0.9$, approach $=1$)
power.nb.test (mu0 $=5.9 / 3, \mathrm{RR}=0.4$, theta $=0.49$, duration $=3$, power $=0.9$, approach $=2$)
power.nb.test (mu0 $=5.9 / 3, R R=0.4$, theta $=0.49$, duration $=3$, power $=0.9$, approach $=3$)
power.nb.test (mu0 $=13 / 6, \mathrm{RR}=0.2$, theta $=0.52$, duration $=6$, power $=0.9$, approach $=1$)
power.nb.test (mu0 $=13 / 6, R R=0.2$, theta $=0.52$, duration $=6$, power $=0.9$, approach $=2$)
power.nb.test (mu0 $=13 / 6, \mathrm{RR}=0.2$, theta $=0.52$, duration $=6$, power $=0.9$, approach $=3$)

```
## see Section 5 of Zhu and Lakkis (2014)
```

power.nb.test(mu0 $=0.66, R R=0.8$, theta $=1 / 0.8$, duration $=0.9$, power $=0.9)$

```
power.prop1.test Power Calculations for One-Sample Test for Proportions
```


Description

Compute the power of the one-sample test for proportions, or determine parameters to obtain a target power.

Usage

power.prop1.test($\mathrm{n}=\mathrm{NULL}, \mathrm{p} 1=$ NULL, $\mathrm{p} 0=0.5$, sig.level $=0.05$, power $=$ NULL,
alternative = c("two.sided", "less", "greater"),
cont.corr $=$ TRUE, tol $=$.Machine\$double.eps^0.25)

Arguments

$\mathrm{n} \quad$ number of observations (per group)
p1 expected probability
p0 probability under the null hypothesis
sig.level significance level (Type I error probability)
power power of test (1 minus Type II error probability)
alternative one- or two-sided test. Can be abbreviated.
cont.corr use continuity correction
tol numerical tolerance used in root finding, the default providing (at least) four significant digits.

Details

Exactly one of the parameters n, p 1 , power, and sig. level must be passed as NULL, and that parameter is determined from the others. Notice that sig. level has a non-NULL default so NULL must be explicitly passed if you want it computed.
The computation is based on the asymptotic formulas provided in Section 2.5.1 of Fleiss et al. (2003). If cont . corr = TRUE a continuity correction is applied, which may lead to better approximations of the finite-sample values.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Note

The documentation was adapted from power. prop.test.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

J.L. Fleiss, B. Levin and M.C. Paik (2003). Statistical Methods for Rates and Proportions. Wiley Series in Probability and Statistics.

See Also

power. prop.test, prop.test

Examples

```
power.prop1.test(p1 = 0.4, power = 0.8)
power.prop1.test(p1 = 0.4, power = 0.8, cont.corr = FALSE)
power.prop1.test(p1 = 0.6, power = 0.8)
power.prop1.test(n = 204, power = 0.8)
power.prop1.test(n = 204, p1 = 0.4, power = 0.8, sig.level = NULL)
power.prop1.test( }n=194,\textrm{p}1=0.4, power = 0.8, sig.level = NULL
    cont.corr = FALSE)
power.prop1.test(p1 = 0.1, p0 = 0.3, power = 0.8, alternative = "less")
power.prop1.test(p1 = 0.1, p0 = 0.3, power = 0.8, alternative = "less",
    cont.corr = FALSE)
power.prop1.test(n = 31, p0 = 0.3, power = 0.8, alternative = "less")
power.prop1.test(n = 31, p1 = 0.1, p0 = 0.3, power = 0.8, sig.level = NULL,
    alternative = "less")
power.prop1.test(p1 = 0.5, p0 = 0.3, power = 0.8, alternative = "greater")
power.prop1.test(p1 = 0.5, p0 = 0.3, power = 0.8, alternative = "greater",
    cont.corr = FALSE)
power.prop1.test(n = 40, p0 = 0.3, power = 0.8, alternative = "greater")
power.prop1.test(n = 40, p1 = 0.5, p0 = 0.3, power = 0.8, sig.level = NULL,
    alternative = "greater")
```

power.welch.t.test Power Calculations for Two-sample Welch t Test

Description

Compute the power of the two-sample Welch t test, or determine parameters to obtain a target power.

Usage

power.welch.t.test($\mathrm{n}=\mathrm{NULL}, \mathrm{delta}=\mathrm{NULL}, \mathrm{sd} 1=1, \mathrm{sd} 2=1$, sig.level = 0.05, power $=$ NULL, alternative $=c(" t w o . s i d e d ", ~ " o n e . s i d e d ")$, strict $=$ FALSE, tol $=$.Machine\$double.eps^0.25)

Arguments

$\mathrm{n} \quad$ number of observations (per group)
delta (expected) true difference in means
sd1 (expected) standard deviation of group 1
sd2 (expected) standard deviation of group 2
sig.level significance level (Type I error probability)
power power of test (1 minus Type II error probability)
alternative one- or two-sided test. Can be abbreviated.
strict use strict interpretation in two-sided case
tol numerical tolerance used in root finding, the default providing (at least) four significant digits.

Details

Exactly one of the parameters n, delta, power, sd1, sd2 and sig. level must be passed as NULL, and that parameter is determined from the others. Notice that the last three have non-NULL defaults, so NULL must be explicitly passed if you want to compute them.
If strict = TRUE is used, the power will include the probability of rejection in the opposite direction of the true effect, in the two-sided case. Without this the power will be half the significance level if the true difference is zero.

Value

Object of class "power. htest", a list of the arguments (including the computed one) augmented with method and note elements.

Note

The function and its documentation was adapted from power.t.test implemented by Peter Dalgaard and based on previous work by Claus Ekstroem.
uniroot is used to solve the power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

S.L. Jan and G. Shieh (2011). Optimal sample sizes for Welch's test under various allocation and cost considerations. Behav Res Methods, 43, 4:1014-22.

See Also

power.t.test, t.test, uniroot

Examples

```
## identical results as power.t.test, since sd = sd1 = sd2 = 1
power.welch.t.test(n = 20, delta = 1)
power.welch.t.test(power = .90, delta = 1)
power.welch.t.test(power = .90, delta = 1, alternative = "one.sided")
    ## sd1 = 0.5, sd2 = 1
power.welch.t.test(delta = 2, sd1 = 0.5, sd2 = 1, power = 0.9)
## empirical check
M <- 10000
pvals.welch <- numeric(M)
for(i in seq_len(M)){
    x<- rnorm(5, mean = 0, sd = 0.5)
    y <- rnorm(5, mean = 2, sd = 1.0)
    pvals.welch[i] <- t.test(x, y)$p.value
}
## empirical power
sum(pvals.welch < 0.05)/M
```

print. power.mpe.test Print Methods for Hypothesis Tests, Sample size and Power Calcula-
tions

Description

Printing objects of class "power.mpe.test" by simple print methods.

Usage

```
    ## S3 method for class 'power.mpe.test'
    print(x, digits = getOption("digits"), ...)
```


Arguments

x
object of class "power.mpe.test".
digits
. . .
number of significant digits to be used.
further arguments to be passed to or from methods.

Details

The print method is based on the respective method print. power. htest of package stats.
A power.mpe.test object is just a named list of numbers and character strings, supplemented with method and note elements. The method is displayed as a title, the note as a footnote, and the remaining elements are given in an aligned 'name = value' format.

Value

the argument x , invisibly, as for all print methods.

Note

The function first appeared in package mpe, which is now archived on CRAN.

Author(s)

Srinath Kolampally, Matthias Kohl <Matthias.Kohl@stamats. de>

See Also

print. power.htest, power.mpe.known.var, power.mpe.unknown.var

Examples

```
(pkv <- power.mpe.known.var (K = 2, delta = c(1,1), Sigma = diag(c(2,2)), power = 0.9,
    sig.level = 0.025))
print(pkv, digits = 4) # using less digits than default
print(pkv, digits = 12) # using more digits than default
```

```
qqunif
```

qq-Plots for Uniform Distribution

Description

Produce $\mathrm{qq}-\mathrm{plot}(\mathrm{s})$ of the given effect size and p values assuming a uniform distribution.

Usage

```
qqunif(x, ...)
    ## Default S3 method:
    qqunif(x, min = 0, max = 1, ...)
    ## S3 method for class 'sim.power.ttest'
    qqunif(x, color.line = "orange", shape = 19, size = 1,
    alpha = 1, ...)
```

```
## S3 method for class 'sim.power.wtest'
qqunif(x, color.line = "orange", shape = 19, size = 1,
    alpha = 1, ...)
```


Arguments

x
min single numeric, lower limit of the distribution.
$\max \quad$ single numeric, upper limit of the distribution.
color.line color of the line indicating the uniform distribution.
shape point shape.
size point size.
alpha bleding factor (default: no blending.
... further arguments that may be passed through).

Details

The plot generates a ggplot2 object that is shown.
Missing values are handled by the ggplot2 functions.

Value

Object of class gg and ggplot.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

Examples

```
## default
qqunif(runif(100))
## visualization of empirical power and type-I-error
res1 <- sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
    ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
qqunif(res1, alpha = 0.1)
res2 <- sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,
                ny = 6, ry = function(x) rnorm(x, mean = 2),
                ry.H0 = rnorm)
qqunif(res2)
```


Description

Simulate the empirical power and type-I-error of two-sample t-tests; i.e., classical (equal variances), Welch and Hsu t-tests.

Usage

```
sim.power.t.test(nx, rx, rx.H0 = NULL, ny, ry, ry.H0 = NULL,
    sig.level = 0.05, conf.int = FALSE, mu = 0,
    alternative = c("two.sided", "less", "greater"),
    iter = 10000)
```


Arguments

$n x$
$r x \quad$ function to simulate the values of first group (assuming H1).
$r x . H 0 \quad$ NULL or function to simulate the values of first group (assuming H0).
ny single numeric, sample size of second group.
ry function to simulate the values of second group (assuming H1).
ry.H0 NULL or function to simulate the values of second group (assuming H0).
sig.level significance level (type I error probability)
conf.int logical, shall confidence intervals be computed. Increases computation time!
mu true value of the location shift for the null hypothesis.
alternative one- or two-sided test. Can be abbreviated.
iter single integer, number of interations of the simulations.

Details

Functions $r x$ and $r y$ are used to simulate the data under the alternative hypothesis H1. If specified, functions $\mathrm{rx} . \mathrm{H} 0$ and $\mathrm{ry} . \mathrm{H} 0$ simulte the data unter the null hypothesis H 0 .
For fast computations functions from package matrixTests are used.

Value

Object of class "sim. power. ttest" with the results of the three t-tests in the list elements Classical, Welch and Hsu. In addition, the simulation setup is saved in element SetUp.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

J. Hedderich, L. Sachs. Angewandte Statistik: Methodensammlung mit R. Springer 2018.

Hsu, P. (1938). Contribution to the theory of "student's" t-test as applied to the problem of two samples. Statistical Research Memoirs 2: 1-24.
Student (1908). The Probable Error of a Mean. Biometrika, 6(1): 1-25.
Welch, B. L. (1947). The generalization of "Student's" problem when several different population variances are involved. Biometrika, 34 (1-2): 28-35.

See Also

t.test, hsu.t.test, ttest

Examples

```
## Equal variance, small sample size
power.t.test(n = 5, delta = 2)
power.welch.t.test(n = 5, delta = 2)
power.hsu.t.test(n = 5, delta = 2)
sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
    ny = 5, ry = function(x) rnorm(x, mean = 2), ry.H0 = rnorm)
## Equal variance, moderate sample size
power.t.test(n = 25, delta = 0.8)
power.welch.t.test(n = 25, delta = 0.8)
power.hsu.t.test(n = 25, delta = 0.8)
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,
    ny = 25, ry = function(x) rnorm(x, mean = 0.8), ry.H0 = rnorm)
## Equal variance, high sample size
power.t.test(n = 100, delta = 0.4)
power.welch.t.test( }n=100\mathrm{ , delta = 0.4)
power.hsu.t.test(n = 100, delta = 0.4)
sim.power.t.test(nx = 100, rx = rnorm, rx.H0 = rnorm,
    ny = 100, ry = function(x) rnorm(x, mean = 0.4), ry.H0 = rnorm)
## Unequal variance, small sample size
power.welch.t.test(n = 5, delta = 5, sd1 = 1, sd2 = 3)
power.hsu.t.test(n = 5, delta = 5, sd1 = 1, sd2 = 3)
sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
    ny = 5, ry = function(x) rnorm(x, mean = 5, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
## Unequal variance, moderate sample size
power.welch.t.test(n = 25, delta = 1.8, sd1 = 1, sd2 = 3)
power.hsu.t.test(n = 25, delta = 1.8, sd1 = 1, sd2 = 3)
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,
    ny = 25, ry = function(x) rnorm(x, mean = 1.8, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
## Unequal variance, high sample size
```

```
power.welch.t.test(n = 100, delta = 0.9, sd1 = 1, sd2 = 3)
power.hsu.t.test(n = 100, delta = 0.9, sd1 = 1, sd2 = 3)
sim.power.t.test(nx = 100, rx = rnorm, rx.H0 = rnorm,
    ny = 100, ry = function(x) rnorm(x, mean = 0.9, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
## Unequal variance, unequal sample sizes
## small sample sizes
sim.power.t.test(nx = 10, rx = rnorm, rx.H0 = rnorm,
    ny = 5, ry = function(x) rnorm(x, mean = 5, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
    ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
## Unequal variance, unequal sample sizes
## moderate sample sizes
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,
    ny = 50, ry = function(x) rnorm(x, mean = 1.5, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
## Unequal variance, unequal sample sizes
## high sample sizes
sim.power.t.test(nx = 100, rx = rnorm, rx.H0 = rnorm,
    ny = 200, ry = function(x) rnorm(x, mean = 0.6, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
```

sim.power.wilcox.test Monte Carlo Simulations for Empirical Power of Wilcoxon-MannWhitney Tests

Description

Simulate the empirical power and type-I-error of Wilcoxon-Mann-Whitney tests.

Usage

```
sim.power.wilcox.test(nx, rx, rx.H0 = NULL, ny, ry, ry.H0 = NULL,
                        alternative = c("two.sided", "less", "greater"),
                        sig.level = 0.05, conf.int = FALSE, approximate = FALSE,
                        ties = FALSE, iter = 10000, nresample = 10000,
                        parallel = "no", ncpus = 1L, cl = NULL)
```


Arguments

$n x \quad$ single numeric, sample size of first group.
$r x \quad$ function to simulate the values of first group (assuming H1).
rx.H0 NULL or function to simulate the values of first group (assuming H0).

ny	single numeric, sample size of second group.
ry	
ry. H0	
alternative	function to simulate the values of second group (assuming H1).
sig.level	one- or two-sided test. Can be abbreviated. significance level (type I error probability)
conf.int	logical, shall confidence intervals be computed. Strongly increases computation time!
approximate	logical, shall an approximate test be computed; see LocationTests. Increases computation time!
ties	logical, indicating whether ties may occur. Increases computation time!
iter	single positive integer, number of interations of the simulations.
nresample	single positive integer, the number of Monte Carlo replicates used for the com- putation of the approximative reference distribution; see NullDistribution. a character, the type of parallel operation: either "no" (default), "multicore"
parallel	or "snow"; see NullDistribution. a single integer, the number of processes to be used in parallel operation. De- faults to 1L; see NullDistribution.
cl	an object inheriting from class "cluster", specifying an optional parallel or snow cluster if parallel = "snow". Defaults to NULL; see NullDistribution.

Details

Functions $r x$ and $r y$ are used to simulate the data under the alternative hypothesis H1. If specified, functions rx. H 0 and ry. H 0 simulte the data unter the null hypothesis H 0 .
For fast computations functions from package matrixTests and package coin are used.

Value

Object of class "sim. power.wtest" with the results of the Wilcoxon-Mann-Whitney tests. A list elements Exact, Asymptotic and Approximate. In addition, the simulation setup is saved in element SetUp.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Mann, H and Withney, D (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of mathematical Statistics, 18, 50-60.
Wilcoxon, F (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1, 80-83.

See Also

wilcox.test, LocationTests, wilcoxon

Examples

```
## Equal variance, small sample size
power.t.test(n = 5, power = 0.8)
sim.ssize.wilcox.test(rx = rnorm, ry = function(x) rnorm(x, mean = 2),
    power = 0.8, n.min = 3, n.max = 10, step.size = 1)
sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,
    ny = 6, ry = function(x) rnorm(x, mean = 2),
    ry.H0 = rnorm)
```

sim.ssize.wilcox.test Sample Size for Wilcoxon Rank Sum and Signed Rank Tests

Description

Simulate the empirical power of Wilcoxon rank sum and signed rank tests for computing the required sample size.

Usage

```
sim.ssize.wilcox.test(rx, ry = NULL, mu = 0, sig.level = 0.05, power = 0.8,
    type = c("two.sample", "one.sample", "paired"),
    alternative = c("two.sided", "less", "greater"),
    n.min = 10, n.max = 200, step.size = 10,
    iter = 10000, BREAK = TRUE, exact = NA, correct = TRUE)
```


Arguments

rx	function to simulate the values of x, respectively $x-y$ in the paired case.
ry	function to simulate the values of y in the two-sample case
mu	true values of the location shift for the null hypothesis.
sig.level	significance level (Type I error probability)
power	two-sample, one-sample or paired test
type	one- or two-sided test. Can be abbreviated.
alternative	one- or two-sided test. Can be abbreviated.
n.min	integer, start value of grid search.
n.max	integer, stop value of grid search.
step.size	integer, step size used in the grid search.
iter	integer, number of interations of the simulations.
BREAK	logical, grid search stops when the emperical power is larger than the requested power.
exact	logical or NA (default) indicator whether an exact p-value should be computed (see Details at wilcoxon). A single value or a logical vector with values for each observation.
correct	ogical indicator whether continuity correction should be applied in the cases where p -values are obtained using normal approximation. A single value or logical vector with values for each observation; see wilcoxon.

Details

Functions rx and ry are used to simulate the data and functions row_wilcoxon_twosample and row_wilcoxon_onesample of package matrixTests are used to efficiently compute the p values of the respective test.
We recommend a two steps procedure: In the first step, start with a wide grid and find out in which range of sample size values the intended power will be achieved. In the second step, the interval identified in the first step is used to find the sample size that leads to the required power setting step. size $=1$ and BREAK $=$ FALSE. This approach is applied in the examples below.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Wilcoxon, F (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1, 80-83.

See Also

wilcox.test, wilcoxon

Examples

```
###############################################################################
## two-sample
## iter = 1000 to reduce check time
#################################################################################
rx <- function(n) rnorm(n, mean = 0, sd = 1)
ry <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 65, n.max = 70, step.size = 1,
    iter = 1000, BREAK = FALSE)
## compared to
power.t.test(delta = 0.5, power = 0.8)
rx <- function(n) rnorm(n, mean = 0, sd = 1)
ry <- function(n) rnorm(n, mean = 0.5, sd = 1.5)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000, alternative = "less")
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 85, n.max = 90, step.size = 1,
    iter = 1000, BREAK = FALSE, alternative = "less")
## compared to
power.welch.t.test(delta = 0.5, sd = 1, sd2 = 1.5, power = 0.8, alternative = "one.sided")
rx<- function(n) rnorm(n, mean = 0.5, sd = 1)
ry <- function(n) rnorm(n, mean = 0, sd = 1)
```

```
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 100, iter = 1000, alternative = "greater")
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 50, n.max = 55, step.size = 1,
    iter = 1000, BREAK = FALSE, alternative = "greater")
## compared to
power.t.test(delta = 0.5, power = 0.8, alternative = "one.sided")
rx <- function(n) rgamma(n, scale = 10, shape = 1)
ry <- function(n) rgamma(n, scale = 15, shape = 1)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.max = 200, iter = 1000)
sim.ssize.wilcox.test(rx = rx, ry = ry, n.min = 125, n.max = 135, step.size = 1,
    iter = 1000, BREAK = FALSE)
#################################################################################
## one-sample
## iter = 1000 to reduce check time
################################################################################
rx<- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.max = 100, iter = 1000)
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.min = 33, n.max = 38,
    step.size = 1, iter = 1000, BREAK = FALSE)
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample")
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.max = 100, iter = 1000,
    alternative = "greater")
sim.ssize.wilcox.test(rx = rx, mu = 0, type = "one.sample", n.min = 25, n.max = 30,
                            step.size = 1, iter = 1000, BREAK = FALSE, alternative = "greater")
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample", alternative = "one.sided")
sim.ssize.wilcox.test(rx = rx, mu = 1, type = "one.sample", n.max = 100, iter = 1000,
    alternative = "less")
sim.ssize.wilcox.test(rx = rx, mu = 1, type = "one.sample", n.min = 20, n.max = 30,
                step.size = 1, iter = 1000, BREAK = FALSE, alternative = "less")
## compared to
power.t.test(delta = 0.5, power = 0.8, type = "one.sample", alternative = "one.sided")
rx <- function(n) rgamma(n, scale = 10, shape = 1)
sim.ssize.wilcox.test(rx = rx, mu = 5, type = "one.sample", n.max = 200, iter = 1000)
sim.ssize.wilcox.test(rx = rx, mu = 5, type = "one.sample", n.min = 40, n.max = 50,
    step.size = 1, iter = 1000, BREAK = FALSE)
################################################################################
## paired
## identical to one-sample, requires random number generating function
## that simulates the difference x-y
## iter = 1000 to reduce check time
###############################################################################
rxy <- function(n) rnorm(n, mean = 0.5, sd = 1)
sim.ssize.wilcox.test(rx = rxy, mu = 0, type = "paired", n.max = 100,
    iter = 1000)
sim.ssize.wilcox.test(rx = rxy, mu = 0, type = "paired", n.min = 33,
    n.max = 38, step.size = 1, iter = 1000, BREAK = FALSE)
```

\#\# compared to
power.t.test(delta $=0.5$, power $=0.8$, type $=$ "paired")
ssize.pcc
Sample Size Planning for Developing Classifiers Using High Dimensional Data

Description

Calculate sample size for training set in developing classifiers using high dimensional data. The calculation is based on the probability of correct classification (PCC).

Usage

ssize.pcc(gamma, stdFC, prev $=0.5$, nrFeatures, sigFeatures $=20$, verbose $=$ FALSE)

Arguments

gamma tolerance between PCC(infty) and PCC(n).
stdFC expected standardized fold-change; that is, expected fold-change devided by within class standard deviation.
prev expected prevalence.
nrFeatures number of features (variables) considered.
sigFeatures number of significatn features; default (20) should be sufficient for most if not all cases.
verbose print intermediate results.

Details

The computations are based the algorithm provided in Section~4.2 of Dobbin and Simon (2007). Prevalence is incorporated by the simple rough approach given in Section~4.4 (ibid.).

The results for prevalence equal to $\$ 50 \% \$$ are identical to the numbers computed by https: //brb. nci.nih.gov/brb/samplesize/samplesize4GE.html. For other prevalences the numbers differ and are larger for our implementation.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Note

optimize is used to solve equation (4.3) of Dobbin and Simon (2007), so you may see errors from it.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

K. Dobbin and R. Simon (2007). Sample size planning for developing classifiers using highdimensional DNA microarray data. Biostatistics, 8(1):101-117.
K. Dobbin, Y. Zhao, R. Simon (2008). How Large a Training Set is Needed to Develop a Classifier for Microarray Data? Clin Cancer Res., 14(1):108-114.

See Also

```
optimize
```


Examples

```
## see Table 2 of Dobbin et al. (2008)
g <- 0.1
fc <- 1.6
ssize.pcc(gamma = g, stdFC = fc, nrFeatures = 22000)
## see Table 3 of Dobbin et al. (2008)
g <- 0.05
fc <- 1.1
ssize.pcc(gamma = g, stdFC = fc, nrFeatures = 22000)
```

```
ssize.propCI Sample Size Calculation for Confidence Interval of a Proportion
```


Description

Compute the sample size for the two-sided confidence interval of a single proportion.

Usage

ssize.propCI(prop, width, conf.level $=0.95$, method $=$ "wald-cc")

Arguments

prop expected proportion
width width of the confidence interval
conf.level confidence level
method method used to compute the confidence interval; see Details.

Details

The computation is based on the asymptotic formulas provided in Section 2.5.2 of Fleiss et al. (2003). If method = "wald-cc" a continuity correction is applied.

There are also methods for Jeffreys, Clopper-Pearson, Wilson and the Agresti-Coull interval; see also binomCI.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

J.L. Fleiss, B. Levin and M.C. Paik (2003). Statistical Methods for Rates and Proportions. Wiley Series in Probability and Statistics.
W.W. Piegorsch (2004). Sample sizes for improved binomial confidence intervals. Computational Statistics \& Data Analysis, 46, 309-316.
M. Thulin (2014). The cost of using exact confidence intervals for a binomial proportion. Electronic Journal of Statistics, 8(1), 817-840.

See Also

```
power.prop1.test, binomCI
```


Examples

```
ssize.propCI(prop = 0.1, width = 0.1)
ssize.propCI(prop = 0.3, width = 0.1)
ssize.propCI(prop = 0.3, width = 0.1, method = "wald")
ssize.propCI(prop = 0.3, width = 0.1, method = "jeffreys")
ssize.propCI(prop = 0.3, width = 0.1, method = "clopper-pearson")
ssize.propCI(prop = 0.3, width = 0.1, method = "wilson")
ssize.propCI(prop = 0.3, width = 0.1, method = "agresti-coull")
```

```
ssize.reference.range Power Calculations for Two-sample Hsu t Test
```


Description

Compute the sample size for reference range studies, or determine parameters for a given sample size; see Jennen-Steinmetz and Wellek (2005).

Usage

ssize.reference.range($n=$ NULL, delta $=$ NULL, ref.prob $=0.95$, conf.prob $=$ NULL, alternative = c("two.sided", "one.sided"), method = "parametric", exact = TRUE, tol $=$. Machine\$double.eps^$\left.{ }^{\wedge} 0.5\right)$

Arguments

n
number of observations
delta difference between empirical and target coverage of reference range
ref.prob target coverage of reference range
conf.prob confidence probability to acchieve given difference between empirical and target coverage
alternative a character string specifying "two.sided" (default), or one-sided reference ranges. You can specify just the initial letter.
method either "parametric" or "nonparametric"; see details
exact use exact or approximate method
tol numerical tolerance used in root finding, the default providing (at least) eight significant digits.

Details

Exactly one of the parameters n, delta, ref. prob and conf. prob must be passed as NULL, and that parameter is determined from the others. In case of ref. prob NULL must be explicitly passed if you want to compute it.

If method "parametric" a normal distribution is assumed for the investigated quantity.
If method "nonparametric" an arbitrary continuous probability distribution is assumed.
If exact = TRUE is used, the computations use the exact formulas (5) and (9) of Jennen-Steinmetz and Wellek (2005).
If exact = FALSE is used, the computations use the approximate formulas (6) and (10) of JennenSteinmetz and Wellek (2005).

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Note

uniroot is used to solve the equations for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

C. Jennen-Steinmetz, S. Wellek (2005). A new approach to sample size calculation for reference interval studies. Statistics in Medicine 24:3199-3212.

See Also

uniroot

Examples

```
## see Table 1 in Jennen-Steinmetz and Wellek (2005)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
## 135 vs 125 (error in Table 1)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.03, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.025, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
## 314 vs. 305 (error Table 1?)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.02, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.015, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,
```

```
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.01, ref.prob = 0.9, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.015, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.0125, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.01, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.0075, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = TRUE)
ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE)
ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = FALSE)
ssize.reference.range(delta = 0.005, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE)
```

\#\# results are equivalent to one-sided reference range with coverage of

```
## 95 percent instead of 90 percent; for example
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = TRUE, alternative = "one.sided")
## 135 vs 125 (error in Table 1)
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = TRUE, alternative = "one.sided")
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,
    method = "parametric", exact = FALSE, alternative = "one.sided")
ssize.reference.range(delta = 0.03, ref.prob = 0.95, conf.prob = 0.9,
    method = "nonparametric", exact = FALSE, alternative = "one.sided")
```

volcano Volcano Plots

Description

Produce volcano plot(s) for simulations of power and type-I-error of tests.

Usage

```
## S3 method for class 'sim.power.ttest'
volcano(x, alpha = 1, shape = 19,
                        hex = FALSE, bins = 50, ...)
## S3 method for class 'sim.power.wtest'
volcano(x, alpha = 1, shape = 19,
    hex = FALSE, bins = 50, ...)
```


Arguments

x
alpha
shape
hex
bins

Details

The plot generates a ggplot2 object that is shown.
Missing values are handled by the ggplot2 functions.

Value

Object of class gg and ggplot.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Wikipedia contributors, Volcano plot (statistics), Wikipedia, The Free Encyclopedia, https://en. wikipedia.org/w/index.php?title=Volcano_plot_(statistics)\&oldid=900217316 (accessed December 25, 2019).
For more sophisticated and flexible volcano plots see for instance: Blighe K, Rana S, Lewis M (2019). EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R/Bioconductor package. https://github.com/kevinblighe/EnhancedVolcano.

See Also

volcano

Examples

```
res1 <- sim.power.t.test(nx = 5, rx = rnorm, rx.H0 = rnorm,
    ny = 10, ry = function(x) rnorm(x, mean = 3, sd = 3),
    ry.H0 = function(x) rnorm(x, sd = 3))
volcano(res1)
## low number of iterations to reduce computation time
res2 <- sim.power.wilcox.test(nx = 6, rx = rnorm, rx.H0 = rnorm,
    ny = 6, ry = function(x) rnorm(x, mean = 2),
    ry.H0 = rnorm, iter = 100, conf.int = TRUE)
volcano(res2)
```


Index

```
* hplot
    hist, 3
    qqunif, 22
    volcano, 37
* htest
    power.ancova,4
    power.diagnostic.test,7
    power.hsu.t.test,8
    power.mpe.known.var, 12
    power.mpe.unknown.var, 14
    power.nb.test, 16
    power.prop1.test, 18
    power.welch.t.test, 19
    print.power.mpe.test, 21
    sim.power.t.test,24
    sim.power.wilcox.test,}2
    sim.ssize.wilcox.test,28
    ssize.pcc, 31
    ssize.propCI, 32
    ssize.reference.range, 33
* multivariate
    power.mpe.atleast.one, 10
    power.mpe.known.var, }1
    power.mpe.unknown.var, 14
* package
    MKpower-package, 2
* power.htest
    print.power.mpe.test, 21
binomCI, 33
glm.nb,17
hist, 3,3
hsu.t.test, 25
LocationTests,27
MKpower (MKpower-package), 2
MKpower-package, 2
```

NullDistribution, 27
optimize, 32
power. ancova, 4
power. anova.test, 5
power.diagnostic.test, 6
power.hsu.t.test, 8
power.mpe.atleast.one, 10
power.mpe.known.var, 12, 14, 15, 22
power.mpe. unknown.var, $13,14,22$
power.nb.test, 16
power. prop.test, 19
power.prop1.test, 18, 33
power.t.test, 5, 10, 21
power.welch.t.test, 10,19
print, 21, 22
print. power.htest, 22
print. power.mpe.test, 21
prop.test, 19
qqunif, 22
rnegbin, 16, 17
sim. power.t.test, 24
sim. power.wilcox.test, 26
sim.ssize.wilcox.test, 28
ssize.pcc, 31
ssize.propCI, 32
ssize.reference.range, 33
t.test, $10,21,25$
ttest, 25
uniroot, $8,10-12,14,21,35$
volcano, 37, 38
wilcox.test, 27, 29
wilcoxon, 27-29

