## ---- message = F-------------------------------------------------------- library(MDMR) data(mdmrdata) D <- dist(Y.mdmr, method = "manhattan") ## ------------------------------------------------------------------------ mdmr.res <- mdmr(X = X.mdmr, D = D) summary(mdmr.res) ## ------------------------------------------------------------------------ # --- Directly compute the eigenvalues G <- gower(D) lambda <- eigen(G, only.values = T)$values mdmr.res2 <- mdmr(X = X.mdmr, G = G, lambda = lambda) summary(mdmr.res2) # --- Output the eigenvalues of G using the first call to mdmr() and pass them to # --- subsequent calls # Generate a hypothetical additional predictor we want to test first set.seed(102) x1 <- rnorm(500) mdmr.tmp <- mdmr(X = x1, D = D, return.lambda = T) # Pass the eigenvalues output by mdmr(return.lambda = t) to the next call of mdmr() lambda <- mdmr.tmp$lambda mdmr.res3 <- mdmr(X = X.mdmr, G = G, lambda = lambda) summary(mdmr.res3) ## ---- fig.width = 5, fig.height = 5, fig.align = 'center'---------------- plot(X.mdmr[,1], Y.mdmr[,1], main = paste0("Correlation = ", round(cor(X.mdmr[,1], Y.mdmr[,1]), 3)), xlab = "x1", ylab = "y1") cor.test(X.mdmr[,1], Y.mdmr[,1]) ## ---- fig.width = 7, fig.height = 7/(16/9)------------------------------- par(mar = c(5, 5, 4, 2) + 0.1) delta(X = X.mdmr, Y = Y.mdmr, dtype = "manhattan", plot.res = T, niter = 1, seed = 12345) ## ---- fig.width = 7, fig.height = 7/(16/9)------------------------------- D <- dist(Y.mdmr, method = "manhattan") G <- gower(D) q <- ncol(Y.mdmr) G.list <- lapply(1:q, FUN = function(k) { set.seed(k) Y.shuf <- Y.mdmr Y.shuf[,k] <- sample(Y.shuf[,k]) gower(dist(Y.shuf, method = "manhattan")) }) names(G.list) <- colnames(Y.mdmr) par(mar = c(5, 5, 4, 2) + 0.1) delta(X = X.mdmr, G = G, G.list = G.list, plot.res = T)