--- title: "Case Studies" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Case Studies} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(MD2sample) cases=MD2sample::case.studies(ReturnCaseNames=TRUE) ``` ```{r} multiple.graphs = function (px, py,xname=" ") { egg::ggarrange(px, py, ncol = 2, nrow = 1) } ``` This vignette lists the case studies included in the package: ## Dim=2, equal marginals ```{r} for(i in seq_along(cases)) { if(!endsWith(cases[i], "D2")) next tmp=case.studies(i, 2000) print(cases[i]) p=tmp$param_alt[2] if(startsWith(cases[i],"Dalitz")) p=10*p dta=tmp$f(p) dtax=data.frame(x=dta$x[,1], y=dta$x[,2]) dtay=data.frame(x=dta$y[,1], y=dta$y[,2]) px=ggplot2::ggplot(dtax, ggplot2::aes(x=x, y=y))+ ggplot2::geom_point(color="blue", alpha=0.5, size=0.5)+ ggplot2::labs(x=expression(x[1]), y=expression(x[2])) py=ggplot2::ggplot(dtay, ggplot2::aes(x=x, y=y))+ ggplot2::geom_point(color="red", alpha=0.5)+ ggplot2::labs(x=expression(x[1]), y=expression(x[2])) multiple.graphs(px, py, cases[i]) } ``` ## Dim=2, unequal marginals ```{r} for(i in seq_along(cases)) { if(!endsWith(cases[i], "M")) next tmp=case.studies(i, 2000) print(cases[i]) p=tmp$param_alt[2] if(startsWith(cases[i],"Dalitz")) p=10*p dta=tmp$f(p) dtax=data.frame(x=dta$x[,1], y=dta$x[,2]) dtay=data.frame(x=dta$y[,1], y=dta$y[,2]) px=ggplot2::ggplot(dtax, ggplot2::aes(x=x, y=y))+ ggplot2::geom_point(color="blue", alpha=0.5, size=0.5)+ ggplot2::labs(x=expression(x[1]), y=expression(x[2])) py=ggplot2::ggplot(dtay, ggplot2::aes(x=x, y=y))+ ggplot2::geom_point(color="red", alpha=0.5)+ ggplot2::labs(x=expression(x[1]), y=expression(x[2])) multiple.graphs(px, py, cases[i]) } ``` ## Dim=5, equal marginals - NormalD5: multivariate normal distribution with equal marginals. - tD5: multivariate t distribution with 5 degrees of freedom and equal marginals. - FrankD5: Frank cupola. - ClaytonD5: Clayton cupola. - GumbelD5: Gumbel copula. - JoeD5: Joe cupola. - UniformFrankD5: mixture of uniform and Frank cupola. - FrankClaytonD5: mixture of Frank and Clayton cupolas. - FrankJoeD5: mixture of Frank and Joe cupolas. ## Dim=5, unequal marginals - UniformExponentialM5: Exponential distributions. - FrankExponentialM5: Frank cupola with exponential marginals. - FrankLinearM5: Frank cupola with linear marginals. - FrankNormalM5: Frank cupola with linear marginals. - ClaytonExponentialM5: Clayton cupola with exponential marginals. - ClaytonLinearM5: Clayton cupola with linear marginals. - ClaytonNormalM5: Clayton cupola with linear marginals.