Package 'LSMjml'

December 19, 2025

Type Package
Title Fitting Latent Space Item Response Models using Joint Maximum Likelihood Estimation
Version 0.6.0
Author Dylan Molenaar [aut, cre]
Maintainer Dylan Molenaar <d.molenaar@uva.nl></d.molenaar@uva.nl>
Description In Latent Space Item Response Models, subjects and items are embedded in a multidimensional Euclidean latent space. As such, interactions among persons, items, and personitem combinations can be revealed that are unmodelled in more conventional item response theory models. This package implements the methods from Molenaar & Jeon (in press) and can be used to fit Latent Space Item Response Models to data using joint maximum likelihood estimation. The package can handle binary data, ordinal data, and data with mixed scales. The package incorporates facilities for data simulation, rotation of the latent space, and K-fold cross-validation to select the number of dimensions of the latent space.
License GPL-3
Encoding UTF-8
Imports Rcpp (>= 1.0.12), lavaan, pROC, psych
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2025-12-19 15:10:08 UTC
Contents
LSMfit 2 LSMrotate 6 LSMselect 8 LSMsim 10
Index 13
1
1

LSMfit	Fitting Latent Space Item Response Models using Joint Maximum Likelihood Estimation

Description

This function fits a Latent Space Item Response Model (LSIRM) with an R dimensional latent space using penalized Joint Maximum Likelihood (pJML) or constrained Joint Maxmum Likelihood (cJML) to observed binary or ordinal item scores.

Usage

```
LSMfit(X, ndim_z, penalty=NULL, C=NULL, starts=NULL, tol=.1e-2, silent=FALSE)
```

Arguments

A matrix of size N by n containing the binary or ordinal item scores, where N is the number of subjects and n is the number of items. The number of item score categories can be different across items as long as the lowest score is coded 0 for all items. NA's are allowed.
Number of dimensions of the latent space, R.
The weight for the L2 penalty of pJML. If both penalty and C (see below) are NULL (the default), a pJML is used with a weight of 1 (i.e., standard normal prior on all parameters).
The maximum size of the norm of the item parameter vectors. The resulting maximum norm for the person parameter vectors is 1/2*C.
Either a list containing starting values for the model parameters (see details) or a character string inidcating the method of starting value calculation. The options are:
"wls" the starting values are determined from fitting a R+1 dimensional item factor model to the polychoric correlation matrix of X using weighted least squares
"ml" the starting values are determined from fitting a R+1 dimensional linear factor model to the polychoric correlation matrix of X using normal theory maximum likelihood (default)
"random" starting values are drawn from normal distributions.
Convergence criterion: Iterations stop if the difference in loglikelihoods between two subsequent iterations is smaller than this number. Default is .001.
Logical. If FALSE, iterations details are printed to the screen during estimation.

Details

LSMfit optimizes the joint likelihood function of the LSIRM described in Molenaar and Jeon (in press) using a variant of the alternating optimization algorithm by Chen et al. (2019) and using either a L2 regularization penalty similar to Bergner et al. (2022) or a constraint on the norms of the parameter vectors similar to Chen et al. (2019). For binary X_{pi} , the LISRM by Molenaar and Jeon is given by:

$$logit(E(X_{pi})) = \theta_p + b_i - (\sum_{r=1}^{R} (z_{pr} - w_{ir})^2)^{1/2}$$

where θ_p is a person intercept, b_i is an item intercept, R denotes the dimension of the latent space, and z_{pr} and w_{ir} are respectively the person and item coordinates in the latent space. The matrix W containing the w_{ir} parameters is constrained to an echelon structure (i.e., all elements from the upper triangle of submatrix $W_{1:(R-1),1:(R-1)}$ are fixed to 0. Next, cJML estimation involves constraining the Euclidean norm of person parameter vector $\tau_{1p} = [\theta_p, z_{p1}, z_{p2}, ..., z_{pK}]$ to be equal to C, and the Euclidean norm of the item parameter vector $\tau_{2i} = [b_i, w_{i1}, w_{i2}, ..., w_{iK}]$ to be equal to 1/2*C. On the contrary, pJML estimation involves adding an L2 regularization penalty for all parameters to the joint likelihood function in such a way that the penalty parameter can be interpreted as the precision of a 0-centered normal prior on the parameters.

Using the starts argument, starting values can be provided in a list containing entries:

z0 a N by R matrix with starting values for z_{pr} w0 a n by R matrix with starting values for w_{ir} b0 a n by 1 matrix with starting values for b_i theta0 a N by 1 matrix with starting values for θ_p

Alternatively, starting values can be automatically determined by LSMfit. To this end, the following R+1 factor model wil be fit (omitting the item intercept):

$$g(E(X_{pi})) = \eta_{p0} + \sum_{r=1}^{R} \lambda_{ir} \eta_{pr}$$

where the n by R matrix of λ_{ir} parameters follows the echelon structure above, and g(.) is either the identity link or the probit link (see below). The model above is fit to the polychoric correlation matrix of X using either weighted least squares (WLS) estimation with a probit link for g(.) or normal theory maximum likelihood (ML) estimation with an identity link for g(.) (i.e., the polychoric correlation matrix is treated as a pmcc matrix). In both cases, the thresholds of the polychoric correlation matrix are taken as the basis for the starting values of b_i , the factor score estimates of η_{p0} are taken as starts for θ_p , the estimates of η_{pr} are taken as the starts for z_{pr} , and the estimates of λ_{ir} are taken as a basis for the starting values of w_{ir} . The WLS approach is statistically the most rigorous approach but can be time consuming, while the ML approach is an ad-hoc approach but which is fast and turns out to work well in practice. The ML approach is the default approach to obtain starting values if starts=NULL. Especially for models with R>2 fitting the factor model above may fail. In that case, LSMfit automatically switches to random starts.

Ordinal items are internally accommodated by dummy coding the items with more than 2 score levels into C-1 binary variables using a cummulatrive binary coding scheme (see Molenaar & Jeon, in press). Next, the dummy coded variables are submitted to the binary LSIRM above with the w_{ir} parameters equated for dummy coded variables that correspond to the same original items. In the resuling model, the estimates of b_i correspond to the category parameters of a sequential IRT model (Tutz, 1990) which are generally close to those of a graded response IRT model. The number of score levels can be different across items as long as the lowest score is coded 0 for all items

Value

An object of class LSMfit with values

theta	θ_p estimates
b	b_i estimates
Z	z_{pr} estimates
W	z_{ir} estimates

logL value of the loglikelihood at convergence

starts the starting values used

as_starts a list containing the parameter estimates, suitable to be used as argument for

starts in a new run

internal various matrices used internally

Author(s)

Dylan Molenaar <d.molenaar@uva.nl>

References

Bergner, Y., Halpin, P., & Vie, J. J. (2022). Multidimensional Item Response Theory in the Style of Collaborative Filtering. *Psychometrika*, **87(1)**, 266-288. https://doi.org/10.1007/s11336-021-09788-9

Chen, Y., Li, X., & Zhang, S. (2019). Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis. *Psychometrika*, **84(1)**, 124-146. https://doi.org/10.1007/s11336-018-9646-5

Molenaar, D., & Jeon, M.J. (in press). Joint maximum likelihood estimation of latent space item response models. *Psychometrika*.

Tutz, G. (1990). Sequential item response models with an ordered response. *British Journal of Mathematical and Statistical Psychology*, **43(1)**, 39-55. https://doi.org/10.1111/j.2044-8317.1990.tb00925.x

See Also

LSMselect for selecting the number of latent space dimensions using cross-validation. LSMsim for simulating data according to the LSIRM. LSMrotate for rotating item and person coordinates.

```
#
# only binary items
#
# data sim with 1000 subjects and 20 binary items
# according to 2 dimensional latent space model (R=2)
set.seed(1111)
N=1000
nit=20
ndim_z=2
```

```
dat_obj=LSMsim(N,nit,ndim_z)
X=dat_obj$X
zt=dat_obj$par$zt
                      # rotated true z, see ?LSMsim and ?LSMrotate
wt=dat_obj$par$wt
                      # rotated true w
#fit model
results=LSMfit(X,2)
#plot the parameter recovery results
oldpar=par(mfrow=c(2,2))
s_p=sign(cor(results$z,zt))
                                     # to correct for sign switches in the plots
s_i=sign(cor(results$w,wt))
plot(s_p[1,1]*zt[,1],results$z[,1]); abline(0,1)
plot(s_p[2,2]*zt[,2],results$z[,2]); abline(0,1)
plot(s_i[1,1]*wt[,1],results$w[,1]); abline(0,1)
plot(s_i[2,2]*wt[,2],results$w[,2]); abline(0,1)
par(oldpar)
# mixed scale items
# data sim with 1000 subjects and 20 mixed scale items
# according to 2 dimensional latent space model (R=2)
set.seed(1111)
N=1000
nit=20
ndim_z=2
nc=rpois(nit,2)+2 # number of response categories
                    # (between 2 and 7 for this seed)
dat_obj=LSMsim(N,nit,ndim_z,nc=nc)
X=dat_obj$X
                      # rotated true z, see ?LSMsim and ?LSMrotate
zt=dat_obj$par$zt
                     # rotated true w
wt=dat_obj$par$wt
#fit model
results=LSMfit(X,2)
#plot the parameter recovery results
oldpar=par(mfrow=c(2,2))
s_p=sign(cor(results$z,zt))
                                     # to correct for sign switches in the plots
s_i=sign(cor(results$w,wt))
plot(s_p[1,1]*zt[,1],results$z[,1]); abline(0,1)
plot(s_p[2,2]*zt[,2],results$z[,2]); abline(0,1)
plot(s_i[1,1]*wt[,1],results$w[,1]); abline(0,1)
plot(s_i[2,2]*wt[,2],results$w[,2]); abline(0,1)
```

6 LSMrotate

par(oldpar)

LSMrotate Rotate the person and item latent space parameter matrices to an echeleon structure

Description

This function rotates the person and item latent space parameter matrices to an echeleon structure.

Usage

```
LSMrotate(z, w, method="chol")
```

Arguments

z The N by ndim_z matrix of person coordinates $z_p r$ to be rotated. W The nit by ndim_z matrix of item coordinates $w_i r$ to be rotated.

method Character string, either "stepwise" or "chol"

Details

LSMfit constrains the matrix of item coordinates w_{ir} to an echeleon structure in fitting the LSIRM to data. Therefore, to compare to results to other results (e.g., obtained using MCMC) or to the true values used to generate the data, it is necessary to rotate those other results/values to the same echeleon structure. This rotation can be performed using LSMrotate. Following Wansbeek & Meijer (2006), the function uses a Cholesky decomposition (method="chol", the default) which works for an arbirary number if latent space dimensions R (except 1). For method="stepwise", the function performs the explicit rotation steps by determining the angle of rotation as described in Molenaar and Jeon (submitted). This method is only implemented for 2 or 3 latent space dimensions.

Value

A list containing

zt The rotate matrix of z_{pr} parameters. wt The rotate matrix of w_{ir} parameters.

rotMat The rotation matrix.

Author(s)

Dylan Molenaar <d.molenaar@uva.nl>

LSMrotate 7

References

Molenaar, D., & Jeon, M.J. (in press). Joint maximum likelihood estimation of latent space item response models. *Psychometrika*.

Wansbeek, T. & Meijer, E. (2000). *Measurement Error and Latent Variables in Econometrics*. Amsterdam: North-Holland.

See Also

LSMfit to fit LSIRM models.

```
set.seed(1111)
N=1000
nit=20
ndim_z=2
#some true values not following the echeleon structure
z=matrix(rnorm(N*ndim_z),N,ndim_z)
w=matrix(rnorm(nit*ndim_z),nit,ndim_z)
# simluate data using these true values
dat_obj=LSMsim(N,nit,ndim_z,z=z,w=w)
X=dat_obj$X
#fit model
results=LSMfit(X,2)
#plot the parameter recovery results using the *unrotated* true values
#spoiler: will look like nothing
oldpar=par(mfrow=c(2,2))
s_p=sign(cor(results$z,z))
                                   # to correct for sign switches in the plots
s_i=sign(cor(results$w,w))
plot(s_p[1,1]*z[,1],results$z[,1]); abline(0,1)
plot(s_p[2,2]*z[,2],results$z[,2]); abline(0,1)
plot(s_i[1,1]*w[,1],results$w[,1]); abline(0,1)
plot(s_i[2,2]*w[,2],results$w[,2]); abline(0,1)
#plot the parameter recovery results using the *rotated* true values
#spoiler: will look better
                      # rotated true z, see ?LSMsim and ?LSMrotate
zt=dat_obj$par$zt
wt=dat_obj$par$wt
                      # rotated true w
s_p=sign(cor(results$z,zt))
                                    # to correct for sign switches in the plots
s_i=sign(cor(results$w,wt))
plot(s_p[1,1]*zt[,1],results$z[,1]); abline(0,1)
```

8 LSMselect

```
plot(s_p[2,2]*zt[,2],results$z[,2]); abline(0,1)
plot(s_i[1,1]*wt[,1],results$w[,1]); abline(0,1)
plot(s_i[2,2]*wt[,2],results$w[,2]); abline(0,1)
par(oldpar)
```

LSMselect Selecting the Latent Space Dimensionality using K-fold Cross-Validation

Description

This function perform a K-fold cross validation to select the number of dimensions, R, of the latent space in the Latent Space Item Response Model (LSIRM). Model performance is evaluated using metrics based on the out-of-sample preduction accuracy, the area under the ROC cruve, and the mean squared error.

Usage

```
LSMselect(X, maxDims=3, nfolds=5, penalty=NULL, C=NULL, starts=NULL, tol=.1, silent=TRUE)
```

Arguments

X	A matrix of size N by n containing the binary or ordinal item scores, where N is the number of subjects and n is the number of items. The number of item score categories can be different across items as long as the lowest score is coded 0 for all items. NA's are allowed.
maxDims	The maximum nuber of dimensions R for the latent space to be considered. Should be at least 1 so that at least R=0 and R=1 are considered.
nfolds	The nuber of folds K.
penalty	The weight for the L2 penalty of pJML. If penalty is NULL (the default), a pJML is used with a weight of 1 (i.e., standard normal prior on all parameters).
С	The maximum size of the norm of the person parameter vectors. Not available for cross-validation yet.
starts	Either a list containing starting values for the model parameters or a character string inidcating the method of starting value calculation, see LSMfit
tol	Convergence criterion: Iterations stop if the difference in loglikelihoods between two subsequent iterations is smaller than this number. Default is .1.
silent	Logical. If FALSE, iterations details are printed to the screen during estimation.

LSMselect 9

Details

LSMselect assigns the non-missing elements of the N by n matrix X randomly to one of the K folds making sure that the folds are (close to) equally sized. Then, maxDims+1 models (i.e., R=0, R=1, ..., R=maxDims) are fit leaving out the data of the first fold. Next, using the parameter esimtates for each of the models, the data in the first fold are predicted. Using these predictions and the actual observations in the fold, the three metrics below are calculated. This scheme is repeated for all folds, so that each fold is held out of estimation once.

The metrics calculated are respectively based on the well known prediction accuracy, area under the ROC curve, and mean squared error. However, the metrics are unnormalized and -for accuracy and the ROC curve- are complements so that for all metrics lower values indicate a better model fit. This results in the following metrics:

Unnormalized Classification Error (UCE) The UCE is the number of incorrectly predicted item scores summed over folds

Unnormalized ROC Error (URE) The URE is the complement of the area under the ROC curve multiplied by the fold size and summed over folds

Residual Sum of Squars (RSS) The RSS is the sum of the squared residuals over folds For more details see Molenaar and Jeon (submitted).

Value

An object of class LSMselect with values

tot_metrics The overall metrics (summed over folds)

fold_metrics A list with seperate entries for each metric containing the results for each fold

seperately

Author(s)

Dylan Molenaar <d.molenaar@uva.nl>

References

Molenaar, D., & Jeon, M.J. (in press). Joint maximum likelihood estimation of latent space item response models. *Psychometrika*.

See Also

LSMfit for fitting LSIRM models and for details about the model.

```
# Toy example: compare between R=0 and R=1 for data that follows one dimensional
# latent space model (R=1) using only 2 folds
set.seed(1111)
N=1000
nit=20
ndim_z=1
```

10 LSMsim

```
dat_obj=LSMsim(N,nit,ndim_z)
X=dat_obj$X
LSMselect(X,1,nfolds=2)
```

LSMsim

Simulating Data according to the Latent Space Item Response Model

Description

This function simulates data according to the Latent Space Item Response Model (LSIRM) with an R dimensional latent space and binary and/or ordinal item scores.

Usage

```
LSMsim(N, nit, ndim_z, nc=NULL, theta=NULL, b=NULL, z=NULL, w=NULL, gamma=NULL)
```

Arguments

N	Sample size
nit	Number of items
ndim_z	Number of dimensions of the latent space, R.
nc	Vector of length nit containing the number of response categories for each item. If NULL (the default) all items are simulated to be binary
theta	N-dimensional vector of true person intercepts θ_p , if NULL these are drawn from a standard normal distribution
b	${\tt nit\textsc{-}}$ dimensional vector of true item intercepts $b_p,$ if NULL these are drawn from a uniform distribution
Z	N by ndim_z matrix of true latent space person coordinates z_{pr} , if NULL these are drawn from a standard normal distribution
W	nit by ndim_z matrix of true latent space item coordinates w_{ir} , if NULL these are drawn from a standard normal distribution
gamma	a weight parameter for the Euclidean distances (see details), if NULL gamma=1

Details

Data is simulated according to the original LSIRM by Jeon et al. (2021):

$$logit(E(X_{pi})) = \theta_p + b_i - \gamma (\sum_{r=1}^{R} (z_{pr} - w_{ir})^2)^{1/2}$$

In LSMfit, γ is fixed to one as it is not identified in a joint maximum likelihood framework (see Molenaar & Jeon, submitted). However, for data simulation, γ can be used to change the strength of the effect of z_{pr} and w_{ir} .

LSMsim 11

Value

An list containing:

X the simulated data

par a list containing the true parameter values, including wt and zt, the rotated

matrices of w_{ir} and z_{pr} parameters.

Author(s)

Dylan Molenaar <d.molenaar@uva.nl>

References

Jeon, M., Jin, I. H., Schweinberger, M., & Baugh, S. (2021). Mapping unobserved item–respondent interactions: A latent space item response model with interaction map. Psychometrika, 86(2), 378-403. doi:10.1007/s11336-021-09762-5

Molenaar, D., & Jeon, M.J. (in press). Joint maximum likelihood estimation of latent space item response models. *Psychometrika*.

See Also

LSMfit for fitting LSIRM models using joint maximum likelihood.

```
# data sim with 1000 subjects and 20 items according to 2 dimensional
# latent space model (R=2) with both binary and ordinal items
set.seed(1111)
N=1000
nit=20
ndim_z=2
                                        # mix of 2, 3, and 5 point scales
nc=sample(c(2,3,5),nit,replace=TRUE)
dat_obj=LSMsim(N,nit,ndim_z,nc=nc)
X=dat_obj$X
zt=dat_obj$par$zt
                  # rotated z
wt=dat_obj$par$wt # rotated w
#fit model
results=LSMfit(X,2)
#plot the parameter recovery results
oldpar=par(mfrow=c(2,2))
s_p=sign(cor(results$z,zt))
                                     # to correct for sign switches in the plots
s_i=sign(cor(results$w,wt))
plot(s_p[1,1]*zt[,1],results$z[,1]); abline(0,1)
plot(s_p[2,2]*zt[,2],results$z[,2]); abline(0,1)
plot(s_i[1,1]*wt[,1],results$w[,1]); abline(0,1)
plot(s_i[2,2]*wt[,2],results$w[,2]); abline(0,1)
```

LSMsim

par(oldpar)

Index

```
* models
LSMfit, 2
LSMrotate, 6
LSMselect, 8
LSMsim, 10
* multivariate
LSMfit, 2
LSMrotate, 6
LSMselect, 8
LSMsim, 10

LSMfit, 2, 6–11
LSMrotate, 4, 6
LSMselect, 4, 8
LSMsim, 4, 10
```