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Changes in Version 2.1

• Added functionalities for analyzing matched-set data using the LDM or PERMANOVA

(Zhu et al. 2020)

• Added functionalities for testing presence-absence associations using the LDM or PER-

MANOVA (Hu et al., 2021; Hu and Satten, 2021)

• Fixed some minor bugs

• The results here were computed from R 3.6.0, while the results in vignette v1.0 were

computed from R 3.4.4

Changes in Version 3.0

• Added an option for performing mediation analysis using LDM-med (Yue and Hu 2021)

(test.mediation in ldm)

• Added an option for parallel computing (n.cores in both ldm and permanovaFL)

• Removed the options test.global and test.otu and always perform both global and

OTU tests (one can set n.perm.max=10000 if one is interested in the global tests only

and wants to cap the permutation at 10000)

Changes in Version 4.0

• Added an option for calling the new omnibus test, LDM-omni3 (Zhu et al. 2022), that

combines results from analyzing three scales of taxon data: relative abundance, arcsin-

root transformed relative-abundance, and presence-absence (test.omni3 in ldm)

Changes in Version 5.0

• Added an option to take the second residual (e.g., the Martingale or deviance residual)

obtained from a Cox proportional hazard model that fits the survival outcome and

relevant covariates, and offered a combination test that combines the results of analyzing

the first residual (specified as a covariate in the regression model) and the second residual

(Hu et al. 2022) (other.surv.resid in both ldm and permanovaFL)

• Added an option for performing mediation analysis using PERMANOVA-med (manuscript

under preparation) (test.mediation in permanovaFL)

• Expanded permanovaFL to read multiple distance metrics/matrices to perform an om-

nibus test (dist.method or dist.list in permanovaFL)
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Changes in Version 6.0

• Added an option to perform compositional (association and mediation) analysis of mi-

crobiome data through fitting linear models to centered-log-ratio-transformed taxa count

data

• Fixed some minor bugs
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1 Overview

The LDM package implements the Linear Decomposition Model (Hu and Satten 2020),

which provides a single analysis path that includes global tests of any effect of the microbiome,

tests of the effects of individual OTUs (operational taxonomic units) or ASVs (amplicon

sequence variants) while accounting for multiple testing by controlling the false discovery rate

(FDR), and a connection to distance-based ordination. It accommodates multiple covariates

(e.g., clinical outcomes, environmental factors, treatment groups), either continuous, discrete

(with ≥ 2 levels), or multivariate, as well as interaction terms to be tested either singly or in

combination, allows for adjustment of confounding covariates, and uses permutation-based p-

values that can control for clustered data (e.g., repeated measurements on the same individual).

It gives results for both the frequency (i.e., relative abundance) and arcsine-root-transformed

frequency data, and can give an “omnibus” test that combines results from analyses conducted

on the two scales (LDM-omni). In follow-up papers, we extended the LDM to test associations

with microbiome data at the presence-absence scale (Hu et al. 2021), to analyze matched sets

of samples (Zhu et al. 2020), to test microbiome associations with censored survival times (Hu

et al. 2022), to test mediation effects of the microbiome (LDM-med) (Yue and Hu 2021), and

to perform compositional analysis by fitting linear models to centered-log-ratio-transformed

taxa count data (Hu and Satten 2023). Because LDM applied to relative abundance data

works well when associated taxa are abundant and LDM applied to presence-absence data

works well when associated taxa are relatively rare, we further developed another omnibus

test, LDM-omni3 (Zhu et al., 2022); LDM-omni3 allows simultaneous consideration of data at

the three taxon scales (i.e., relative abundance, arcsin-root transformed relative-abundance,

and presence-absence), thus offering optimal power across scenarios with different association

mechanisms. The wide variety of data types and analyses that the LDM supports are depicted

in Figure 1.

The core function of the LDM package is ldm, which can be used to test association between

covariates of interest and the microbiome, possibly after adjusting for confounding covariates.

Several additional functions are included in the LDM package. The function permanovaFL im-

plements the PERMANOVA-FL test (our version of the PERMANOVA test); like the function

ldm, permanovaFL allows adjustment of confounding covariates, control of clustered data, test

of presence-absence associations (Hu and Satten 2021) and analysis of matched sets of samples

(Zhu et al., 2020); unlike the implementation of PERMANOVA in adonis and adonis2 in the

R package vegan, permanovaFL adopts the permutation scheme described by Freedman and

Lane (1983). The function adjust.data.by.covariates produces the adjusted distance ma-

trix and OTU table after removing the effects of covariates (e.g., confounders). The functions

jaccard.mean and unifrac.mean computes the expected value of the Jaccard and unweighted

UniFrac distance matrices over rarefaction replicates. The function avgdist.squared com-

putes the average of squared distance matrices based on multiple rarefied OTU tables.
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Figure 1. Analyses now supported by the LDM. Analysis types without a citation were
introduced in the original LDM paper (Hu and Satten 2020). “LDM-omni” combines the
relative abundance and arcsin-root transformed relative abundance data. “LDM-omni3”
expands LDM-omni by adding the presence-absence data. “CLR” stands for
centered-log-ratio transformed data. “Clustered” refers to analyses of clustered data where
traits of interest vary by cluster or vary both by and within clusters (some analyses may
require special structure or additional assumptions). “Matched sets” is a special type of
clustered analysis in which all traits of interest vary within sets.
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2 Example dataset 1: throat microbiome data

The throat microbiome data included in this package contain 60 subjects with 28 smokers

and 32 non-smokers. Microbiome data were collected from right and left nasopharynx and

oropharynx region to form an OTU table with 856 OTUs. The phylogenetic tree was con-

structed using UPGMA on the K80 distance matrix of the OTUs. Metadata include smoking

status, packs smoked per year, age, gender, and antibiotic use (we added a binary variable

AntibioticUse which takes value 1 if AntibioticUsePast3Months TimeFromAntibioticUsage

is not equal to "None" and 0 if otherwise). For further information on these data see Hu and

Satten (2020) and references therein. We first prepare this dataset:

> data(throat.tree) # phylogenetic tree; only needed if UniFrac distances are requested

> data(throat.otu.tab) # OTU table

> data(throat.meta) # metadata (covariates of interest, confounding covariates, etc.)

The OTU table should have rows corresponding to samples and columns corresponding to

OTUs (ldm will transpose the OTU table if the number of rows is not equal to the length of

the covariates in the metadata but this consistency check will fail in the unlikely case that the

number of OTUs and samples are equal). Note that samples with zero reads for every OTU,

possibly representing negative controls, are analyzed as they are, but a warning message will

be sent. OTUs with zero reads in every sample will be automatically removed by ldm before

any further analysis is carried out.

It is essential that the OTU table and the metadata have the same number of samples

and that these occur in the same order in the OTU table and metadata. Note also that

fitting the LDM assumes no missing data; samples having a NA value for any covariate in the

formula (including confounders) are removed by ldm before any further analysis is carried out.

Similarly, if a cluster.id variable is specified (see Section 8), samples having cluster.id=NA

are removed.

As in the analysis presented in Hu and Satten (2020), we filtered out OTUs with presence

in fewer than 5 samples, leaving 233 OTUs for analysis:

> otu_presence = which(colSums(throat.otu.tab>0)>=5)

> throat.otu.tab5 = throat.otu.tab[,otu_presence]

> dim(throat.otu.tab5)

[1] 60 233

The filtered OTU table throat.otu.tab5 is also available in the LDM package. Although

this criterion is commonly used, its use is not necessary to run ldm. Note that the taxonomy

table, if it exists, should be subsetted accordingly.
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3 Ordination using distances adjusted for covariates

(Users who read for the testing functionalities of the LDM can skip this section). The

function adjust.data.by.covariates produces (1) the adjusted OTU table and (2) the ad-

justed distance matrix, both having the effects of the covariates (e.g., confounders) removed

using projection, without fitting or testing the LDM. These are also part of the adjustment

of covariates in the LDM. The adjusted distance matrix can be used to perform ordination in

which the effects of confounding covariates are removed. As an example, we perform distance-

based ordination and visualize whether the samples from the throat data are clustered by

smoking status after removing the confounding effects from gender and antibiotic use:

> adj.data <- adjust.data.by.covariates(formula=~Sex+AntibioticUse, data=throat.meta,

otu.table=throat.otu.tab5, dist.method="bray")

> PCs <- eigen(adj.data$adj.dist, symmetric=TRUE)

> PCs.percentage = signif(PCs$values[1:2]/sum(PCs$values),3)*100

> par(mfrow=c(1,1), mar=c(5, 4, 4, 8) + 0.1, pty="s", xpd=TRUE)

> color = rep("blue", length(throat.meta$SmokingStatus))

> color[which(throat.meta$SmokingStatus=="Smoker")] = "red"

> plot(PCs$vectors[,1], PCs$vectors[,2],

main="Ordination based on Bray-Curtis distance",

xlab=paste("PC1 (", PCs.percentage[1], "%)", sep=""),

ylab=paste("PC2 (", PCs.percentage[2], "%)", sep=""),

xlim=c(-0.4, 0.4), ylim=c(-0.4, 0.4),

col=color, pch=21)

> ordiellipse(ord=PCs$vectors, groups=factor(throat.meta$SmokingStatus, exclude=c()),

conf=0.9, col=c("blue", "red"))

> legend(x="topright", inset=c(-0.5, 0.4), bty="n",

legend=c("smokers","non-smokers"), pch=21,

col=c("red","blue"), lty=0)

The resulting plot is shown in Figure 2. By removing confounding directions from the distance

matrix, any clustering pattern by smoking status is not due to correlation between smoking

and gender and/or antibiotic use.
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Figure 2 Ordination of the throat microbiome samples based on the Bray-Curtis distance
after removing the effects of gender and antibiotic use. The ellipses are 90% confidence limits.

4 Writing formulas for ldm and permanovaFL

The function ldm uses a formula interface that is similar to other regression models in R,

but with some differences. The general form of a formula for LDM is:

otu.table | (confounders) ~ (first set of covariates) + (second set) + (last set)

The left hand side of the formula gives the OTU table and any confounders that need to be

controlled for. The generic formula in the absence of confounders is

otu.table ~ (first set of covariates) + (second set) + (last set)

On the right hand side of the formula, parentheses are used to group covariates that should be

considered together as a single “submodel”. The covariates in each submodel are considered

jointly (i.e., leading to a joint p-value for each submodel), and in order from left to right such

that the variance explained by each submodel is that part that remains after the previous

submodels have been fit (i.e., are controlled for). If a submodel contains only a single covariate,

then the parentheses are optional. Similarly, since the confounders are always treated as a

single submodel, the parentheses around the confounders is also optional. The formula

otu.table ~ (confounders) + (first set of covariates) + (second set) + (last set)

will fit the same model as the first formula statement in this section. The only difference is that

moving (confounders) to the right hand side of the model will produce a p-value for testing
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the confounders; specifying the confounders on the left hand side of the formula suppresses this

p-value, which can speed up the ldm, both by reducing the number of test statistics calculated

in each permutation and by possibly reducing the number of permutations required to satisfy

all the stopping criteria.

The standard syntax for formulas in R can be used to expand single covariates into a model

matrices with multiple columns. For example, the formula

otu.table ~ as.factor(a) + b*c

will have two submodels, the first with as many columns (degrees of freedom) as a has levels,

and the second (using the standard R syntax for interactions) with columns corresponding to

(b, c, b×c).

The function permanovaFL uses the same formula interface as ldm. In addition, permanovaFL

allows the OTU table on the left hand side of the formula to be replaced by a pre-calculated

distance matrix.

We now give an example of a formula that can be fit to the throat data. We first wish to

test the association of the microbiome with smoking status and then test the association of

the microbiome with pack per year after removing the association with smoking status, both

tests accounting for the confounding effects of sex and antibiotic use. Thus we specify this

formula in the ldm:

throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus + PackYears
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5 Fitting the LDM model without testing

(Users who read for the testing functionalities of the LDM can skip this section). We can

fit the LDM to the observed data (i.e., obtaining the variance explained [VE] without testing

their significance) by calling ldm with n.perm.max=0. This is useful if we only want to see

how much variability is explained by each set of covariates, or if we want factor loadings from

OTUs. Unless otherwise specified, ldm automatically fits the OTU data at both the frequency

(i.e., relative abundance) scale and the arcsin-root-transformed frequency scale.

Because we would also like to compare the VE by covariates to those by an ordination of the

data using distance, an externally-calculated distance matrix can be used, or ldm can calculate

the distance internally. Current distances supported include all of those supported by vegdist

in the vegan package (i.e., “manhattan”, “euclidean”, “canberra”, “bray”, “kulczynski”, “jac-

card”, “gower”, “altGower”, “morisita”, “horn”, “mountford”, “raup” , “binomial”, “chao”,

“cao”, “mahalanobis”) as well as “hellinger”, “unwt-unifrac”, and “wt-unifrac”. The default

choice for distance is the Bray-Curtis distance. Note that when we internally call vegdist

for its supported distances without changing any of the default settings, the OTU table is

converted to the frequency scale if scale.otu.table=TRUE; the parameter binary=TRUE if a

presence-absence-type of distance is requested. The Hellinger distance measure (“hellinger”)

takes the form 0.5*E, where E is the Euclidean distance between the square-root-transformed

frequency data. The UniFrac distances (“unwt-unifrac” and “wt-unifrac”) are calculated by

internally calling GUniFrac in the GUniFrac package. For the throat microbiome data, we

choose the default Bray-Curtis distance:

> fit <- ldm(formula=throat.otu.tab5|(Sex+AntibioticUse)~SmokingStatus+PackYears,

data=throat.meta,

n.perm.max=0) # parameter for fitting the LDM without testing

> ### frequency scale

> fit$VE.global.freq.submodels # VE for submodels 1 and 2

[1] 0.13891274 0.02751291

> fit$VE.otu.freq.submodels[1,1:3] # Contribution of OTUs 1-3 to VE for submodel 1

4695 4194 5160

3.780166e-07 1.138872e-07 2.666018e-03

> fit$F.global.freq # F statistics for VE of submodels 1 and 2 (i.e., cov1 and cov2)

cov1 cov2

0.049056264 0.009716031

> fit$F.otu.freq[1,1:3] # F statistics for contribution of OTUs 1-3 in submodels 1 and 2

4695 4194 5160

cov1 0.09829664 0.000170493 0.04114451

cov2 0.03139611 0.021585241 0.02909457

> ### arcsin-root transformed scale

> fit$VE.global.tran.submodels # VE for submodels 1 and 2

[1] 1.2829126 0.3691146
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The LDM performs a full decomposition (similar to SVD) of the OTU table; the singular

values are returned in d.freq and d.tran (frequency and arcsin-root-transformed scale). It

can be informative to make a scree plot to see how much variability is explained by submodel

variables compared to the residual variability. The following code accomplishes this; the VE

corresponding to the submodels is plotted in red, while residual components are plotted in

black. In the code that follows, we handle the possibility of multiple terms per submodel by

plotting a single point for each submodel; the value plotted is the average VE (i.e., averaged

over each term in each submodel). We could also plot the VE for each term in each submodel

by plotting the appropriate values of d.freq2.

> scree.freq<-c(fit$VE.global.freq.submodels/fit$VE.df.submodels,fit$VE.global.freq.residuals)

> color <- c(rep("red", 2), rep("black", length(scree.freq)-2))

> plot(scree.freq/sum(scree.freq), main="Frequency Scale",

xlab="Component", ylab="Proportion of total sum of squares", col=color)

> scree.tran<-c(fit$VE.global.tran.submodels/fit$VE.df.submodels,fit$VE.global.tran.residuals)

> color <- c(rep("red", 2), rep("black", length(scree.tran)-2))

> plot(scree.tran/sum(scree.tran), main="Arcsin-Root Scale",

xlab="Component", ylab="", col=color)

The resulting plots are shown in Figure 3. We can see that although the VE by SmokingStatus

does not rank the highest compared to other directions in the whole space (i.e., the augmented

X matrix in the manuscript, which is denoted by x in the output of ldm), it still appears

substantial. By contrast, the VE by PackYears seems very small. Although these results are

suggestive, we must use permutation to decide which VEs are significant. The function ldm

also returns the right singular vectors from the decomposition (v.freq and v.tran) which

can be used to construct biplots (see Satten et al. 2017 for additional details).
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Figure 3 VEs when fitting the LDM to the throat microbiome data. The first two red circles
represent VEs by SmokingStatus and PackYears, respectively. The black circles represent
VEs (ordered by their Bray-Curtis eigenvalues) by residual components, usually referred to as
the scree plot.
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6 Testing relative-abundance associations using ldm and

permanovaFL

The function ldm simultaneously provides global tests of any effect of the microbiome and

OTU-specific tests. Thus the function ldm uses two sequential stopping criteria for the permu-

tation procedure. For the global test, ldm uses the stopping rule of Besag and Clifford (1991),

which stops permutation when a pre-specified minimum number of rejections (n.rej.stop

with default 100; “rejection” occurs when the permutation statistic exceeded the observed

test statistic) has been reached. For the OTU-specific tests, ldm uses the stopping rule of

Sandve et al. (2011), which stops permutation when every OTU test has either reached the

pre-specified number of rejections (n.rej.stop with default 100) or yielded a q-value that

is below the nominal FDR level (fdr.nominal with default 0.1). As a convention, we call

a test “stopped” if the corresponding stopping criterion for that test has been satisfied. For

the OTU-specific tests, there exists an upper bound for the number of permutations for the

algorithm to stop, which is J × Lmin × α−1, where J is the number of OTUs, Lmin is the

pre-specified minimum number of rejections, and α is the nominal FDR. For example, when

Lmin = 100 and α = 0.1, the upper bound is 1000J , which is 233000 for this example dataset.

If the maximum number of permutations n.perm.max takes the default value NULL, then the

maximum number of permutations for testing OTUs is determined in this way, while the

maximum number of permutations for the global test is fixed at 5000. Conversely, if a nu-

meric value for n.perm.max is specified, this value is used for both the global tests and the

OTU-specific tests. All tests are “terminated” when a user-specified n.perm.max have been

generated; if this number is too small, some tests may not have “stopped”. Tests that require

a large number of permutations are those that are close to the threshold for acceptance or

rejection. The function permanovaFL only uses the stopping rule of Besag and Clifford (1991)

as it only implements a global test.

Further, unless specified otherwise by the user, ldm automatically performs tests on two

data scales: the frequency (i.e., relative abundance) scale and the arcsin-root-transformed

frequency scale. The omnibus test reports the most powerful of the two scales (after properly

adjusting for the comparison).

We now give the simplest example of association testing using all default values for the ldm

parameters. We test the association of the throat microbiome with smoking status and then

test the association with pack per year after removing the association with smoking status,

both tests accounting for the confounding effects of sex and antibiotic use:

> res.ldm <- ldm(formula=throat.otu.tab5|(Sex+AntibioticUse)~SmokingStatus+PackYears,

data=throat.meta, seed=67817)

> res.ldm$n.perm.completed

[1] 130000
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> res.ldm$global.tests.stopped

[1] FALSE

> res.ldm$otu.tests.stopped

[1] TRUE

> res.ldm$p.global.omni

cov1 cov2

0.00339932 0.70120000

> res.ldm$detected.otu.omni

$cov1

[1] "2434" "1490" "4703" "3538"

$cov2

character(0)

With 5000 permutations, the stopping criterion of obtaining at least 100 rejections has not been

met by the global test. The OTU tests stopped (met the early stopping criteria) after 130000

permutations. According to the omnibus test results, smoking status (cov1) after accounting

for the confounders is significantly associated with the microbiome (p-value = 0.0034) while

pack per year (cov2) after accounting for smoking status and the confounders is not (p-value =

0.701). Note that, when the true global p-value is very small, a larger number of permutations

may be required to “accurately” estimate it and there is no upper bound for n.perm.max to

guarantee the stop of the algorithm; if the value of global.tests.stopped=FALSE, then the

reported p-value may be used as an upper bound. At the nominal FDR 0.1, we find four

OTUs (with column names “2434”, “‘1490”, “4703”, and “3538” in throat.otu.tab5) that

contribute to the association with smoking status and no OTU for pack per year. These results

are consistent with the level of significance in the corresponding global tests.

Using the code below, we provide a summary table for the detected OTUs (or OTUs with

the top smallest p-values), which includes the raw p-value, adjusted p-value (by the Benjamini-

Hochberg [1995] [BH] procedure), population-level mean relative abundance, directions of

covariate effects, and OTU name (can be substituted by taxonomy assignment); the OTUs

are ordered by the raw p-values:

### order the detected OTUs by their p-values

> w1 = match(res.ldm$detected.otu.omni[[1]], colnames(res.ldm$q.otu.omni))

> o = w1[order(res.ldm$p.otu.omni[1, w1])]

# If no OTU is detected, we can still provide a summary table for the top (e.g., 10) OTUs

# by re-defining o = order(res.ldm$p.otu.omni[1,])[1:10]

> summary.tab = data.frame(raw.pvalue=signif(res.ldm$p.otu.omni[1,o],3),

adj.pvalue=signif(res.ldm$q.otu.omni[1,o],3),
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mean.freq=signif(res.ldm$mean.freq[o],3),

direction=t(ifelse(res.ldm$beta[1,]>0, "+", "-"))[o,],

otu.name=colnames(res.ldm$q.otu.omni)[o], # can use taxonomy assignment

row.names=NULL)

> colnames(summary.tab)[4] = paste("direction.", rownames(res.ldm$beta[1,]), sep="")

> summary.tab

raw.pvalue adj.pvalue mean.freq direction.SmokingStatusNonSmoker otu.name

1 0.000279 0.0583 0.0638 - 1490

2 0.001000 0.0745 0.0373 - 2434

3 0.001070 0.0745 0.0109 - 3538

4 0.001700 0.0887 0.0129 - 4703

It requires some care to interpret the directions of covariate effects. For example,
direction.SmokingStatusNonSmoker = ‘-’ means that the NonSmoker level in the SmokingStatus
covariate is associated with lower relative abundances than the Smokers level, for all four OTUs.

If there is only one covariate after ‘∼’ in the formula, use the modified code below to generate
the summary table:

### order the detected OTUs by their p-values

> w1 = match(res.ldm$detected.otu.omni[[1]], names(res.ldm$q.otu.omni))

> o = w1[order(res.ldm$p.otu.omni[w1])]

# If no OTU is detected, we can still provide a summary table for the top (e.g., 10) OTUs

# by re-defining o = order(res.ldm$p.otu.omni)[1:10]

> summary.tab = data.frame(raw.pvalue=signif(res.ldm$p.otu.omni[o],3),

adj.pvalue=signif(res.ldm$q.otu.omni[o],3),

mean.freq=signif(res.ldm$mean.freq[o],3),

direction=t(ifelse(res.ldm$beta>0, "+", "-"))[o],

otu.name=names(res.ldm$q.otu.omni)[o], # can use taxonomy assignment

row.names=NULL)

> colnames(summary.tab)[4] = paste("direction.", rownames(res.ldm$beta), sep="")

> summary.tab

For the detected OTUs, we can also plot their relative abundance data by smoking status, which
are displayed in Figure 4. We first obtain the relative abundance data adjusted for the confounding
covariates by using adjust.data.by.covariates:

> adj.data.1 <- adjust.data.by.covariates(formula= ~ Sex+AntibioticUse, # "~ 1" if no cov

data=throat.meta, otu.table=throat.otu.tab5,

center.otu.table=FALSE) # suppress centering

# to retain the original range

> n.detected.otu.omni <- length(res.ldm$detected.otu.omni[[1]])

> for (i in 1:n.detected.otu.omni) {

boxplot(adj.data.1$y.freq[,o[i]]~throat.meta$SmokingStatus,

main=paste("Top", i, "OTU"), ylab="Relative Abundance", xlab="Smoking Status")

}
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Figure 4 Box plot of relative abundances (adjusted for sex and antibiotic use).

The permanovaFL function implements the PERMANOVA-FL test (our implementation of the
PERMANOVA test). Like the PERMANOVA test implemented elsewhere (e.g., the adonis or
adonis2 functions in the R package vegan), our permanovaFL only allows testing of global hypotheses.
Here we use the default n.perm.max=5000, i.e., 5000 for the maximum number of permutations.

> res.perm <- permanovaFL(throat.otu.tab5|(Sex+AntibioticUse)~SmokingStatus+PackYears,

data=throat.meta, dist.method="bray", seed=82955)

> res.perm$R.squared # proportion of distance variance explained by each trait

cov1 cov2

0.04997645 0.01365515

> res.perm$F.statistics

cov1 cov2

2.9354949 0.8020703

> res.perm$p.permanova

cov1 cov2

0.00219956 0.64500000

The R-squared values are proportions of variance in the distance matrix (after projecting off the con-
founders, i.e., Sex and AntibioticUse here) explained by each covariate. The global test results are
consistent with those from ldm: smoking status (after accounting for the confounders) is significantly
associated with the microbiome (p-value = 0.0022) while pack per year after accounting for smoking
status (and the confounders) is not (p-value = 0.645).
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7 Testing presence-absence associations using ldm and

permanovaFL

The functions ldm and permanovaFL have implemented functionalities to test associations with
the presence and absence of bacteria. This type of tests are often confounded by the library size
(total number of reads per sample). A frequently used solution is rarefaction, which corresponds to
subsampling reads of all samples to a common rarefaction depth that is often the lowest observed
library size (after removing outliers). However, a single rarefaction typically results in a substantial
loss of reads and hence statistical power. It also introduces a stochastic component to the analysis,
so the results depend on the rarefaction replicate sampled.

In Hu et al. (2021), we presented two ways of extending the LDM F -statistic to aggregate
information over multiple rarefactions: the LDM-F(R), which uses the average of the F -statistic
over R rarefaction replicates as a test statistic, and the LDM-A, which averages the numerator and
denominator of the F statistic separately and then uses the ratio of these averages as a test statistic.
In particular, in LDM-A, the average of the numerator/denominator over all rarefaction replicates
(equivalently, the expectation of the numerator/denominator over rarefaction) can be calculated in a
closed form, and thus it is recommended over LDM-F(R). We have implemented both LDM-A and
LDM-F(R) in ldm. Note that there is only one data scale, which is presence or absence (i.e., binary).

First, we illustrate the LDM-A method using the throat microbiome data, by calling ldm with
n.rarefy="all":

> res.ldmA <- ldm(formula=throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=67817,

n.rarefy="all") # parameter for requesting LDM-A

> res.ldmA$p.global.pa

cov1 cov2

0.00859828 0.75900000

> res.ldmA$detected.otu.pa

$cov1

[1] "4363" "411" "3954"

$cov2

character(0)

According to the global results, smoking status (after accounting for the confounders) is significantly
associated with the presence and absence of some bacteria (p-value = 0.0086) while pack per year
after accounting for smoking status (and the confounders) is not (p-value = 0.759). At the nominal
FDR 0.1, we find three OTUs that are differentially present among smokers and non-smokers. Using
the code below, we provide a summary table for the detected OTUs, which includes the raw p-value,
adjusted p-value (by BH), population-averaged probability of presence, directions of covariate effects,
and OTU name (can be substituted by taxonomy assignment); the OTUs are ordered by the raw
p-values.

### order the detected OTUs by their p-values

> w1 = match(res.ldmA$detected.otu.pa[[1]], colnames(res.ldmA$q.otu.pa))
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# remove [[1]] if there is only one covariate after "~" in the formula for ldm

> o = w1[order(res.ldmA$p.otu.pa[1,w1])]

# If no OTU is detected, we can still provide a summary table for the top (e.g., 10) OTUs

# by re-defining o = order(res.ldmA$p.otu.pa[1,])[1:10]

> summary.ldmA.tab = data.frame(raw.pvalue=signif(res.ldmA$p.otu.pa[1,o],3),

adj.pvalue=signif(res.ldmA$q.otu.pa[1,o],3),

prob.presence=signif(colMeans(res.ldmA$phi)[o],3),

direction=t(ifelse(res.ldmA$beta[1,]>0, "+", "-"))[o,],

otu.name=colnames(res.ldmA$q.otu.pa)[o],

row.names=NULL)

> colnames(summary.ldmA.tab)[4] = paste("direction.", rownames(res.ldmA$beta[1,]), sep="")

> summary.ldmA.tab

raw.pvalue adj.pvalue prob.presence direction.SmokingStatusNonSmoker otu.name

1 0.000687 0.0986 0.881 + 3954

2 0.001240 0.0986 0.119 - 411

3 0.001410 0.0986 0.100 - 4363

It requires some care to interpret the directions of covariate effects. For example,
direction.SmokingStatusNonSmoker = ‘+’ means that the NonSmoker level in the SmokingStatus
covariate is associated with higher probability of presence than the Smokers level for OTU “3954”.

If there is only one covariate after ‘∼’ in the formula, use the modified code below to generate
the summary table:

### order the detected OTUs by their p-values

> w1 = match(res.ldmA$detected.otu.pa[[1]], names(res.ldmA$q.otu.pa))

> o = w1[order(res.ldmA$p.otu.pa[w1])]

# If no OTU is detected, we can still provide a summary table for the top (e.g., 10) OTUs

# by re-defining o = order(res.ldmA$p.otu.pa)[1:10]

> summary.ldmA.tab = data.frame(raw.pvalue=signif(res.ldmA$p.otu.pa[o],3),

adj.pvalue=signif(res.ldmA$q.otu.pa[o],3),

prob.presence=signif(colMeans(res.ldmA$phi)[o],3),

direction=t(ifelse(res.ldmA$beta>0, "+", "-"))[o],

otu.name=names(res.ldmA$q.otu.pa)[o],

row.names=NULL)

> colnames(summary.ldmA.tab)[4] = paste("direction.", rownames(res.ldmA$beta), sep="")

> summary.ldmA.tab

For the detected OTUs, we can also plot the probability of presence in individual samples by
smoking status, which are displayed in Figure 5. We first obtain the probability of presence of an
OTU in each sample over rarefaction (denoted by phi in the ldm output), and adjust it for the
confounding covariates by using the projection operation in the linear regression function lm:

> adj.phi = t(t(lm(res.ldmA$phi~Sex+AntibioticUse, data=throat.meta)$resid) #"~ 0" if no cov
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+ colMeans(res.ldmA$phi))

> n.detected.otu.pa <- length(res.ldmA$detected.otu.pa[[1]])

> for (i in c(1:n.detected.otu.pa)) {

boxplot(adj.phi[,o[i]] ~ throat.meta$SmokingStatus,

main=paste("Top", i, "OTU"), ylab="Probability of Presence", xlab="Smoking Status")

}
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Figure 5 Box plot of probability of presence (adjusted for sex and antibiotic use).
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Next, we illustrate the LDM-F(R) method, which can invoked by calling ldm with binary=TRUE

and n.rarefy=5:

> res.ldmF <- ldm(formula=throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=67817,

binary=TRUE, n.rarefy=5) # parameters for requesting LDM-F(5)

> res.ldmF$p.global.pa # columns:R=1-5; rows: SmokingStatus, PackYears

rarefy1 rarefy2 rarefy3 rarefy4 rarefy5

cov1 0.0079984 0.00839832 0.00739852 0.00739852 0.00739852

cov2 0.7414000 0.74720000 0.77620000 0.82960000 0.83360000

> res.ldmF$detected.otu.pa

$cov1

character(0)

$cov2

character(0)

In Hu and Satten (2021), we presented four ways of extending the PERMANOVA F -statistic to
aggregate information over multiple rarefactions: the PERMANOVA-F(R), which uses the average
of the F -statistic over R rarefaction replicates as a test statistic, the PERMANOVA-D2(R) and
PERMANOVA-D(R), which average the element-wise squared and unsquared distance matrices,
respectively, computed for each of R rarefaction replicates for use in calculating the F -statistic, and
the PERMANOVA-D2-Ao, which calculates the expectation of the Jaccard or unweighted UniFrac
distance matrix over all rarefaction replicates using the oth (o = 1 or 2) order approximation by
the delta method. Like LDM-A, PERMANOVA-D2-Ao does not perform any actual rarefaction and
essentially uses all data in a non-stochastic manner, and thus it is recommended over the other three
methods.

First, we illustrate the PERMANOVA-D2-A2 method, which can be invoked by first calling
jaccard.mean or unifrac.mean for calculating the expected squared Jaccard or unweighted UniFrac
distance matrix and then calling permanovaFL with square.dist=FALSE:

> res.jaccard <- jaccard.mean( throat.otu.tab5 )

> dist.mean.sq <- res.jaccard$jac.mean.sq.o2

# res.unifrac <- unifrac.mean(throat.otu.tab5, throat.tree)

# dist.mean.sq <- res.unifrac$unifrac.mean.sq.o2

> res.perm.D2A2 <- permanovaFL(dist.mean.sq | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=82955,

square.dist=FALSE) # parameters for requesting PERMANOVA-D2-A2

> res.perm.D2A2$p.permanova

cov1 cov2

0.00319936 0.92340000

The expected squared Jaccard or unweighted UniFrac distance matrix, generated as part of the
PERMANOVA-D2-A2 method, can be used as if it were an ordinary squared distance matrix, for
example, for performing ordination. The code below generated the ordination plot based on the
Jaccard distance (after removing confounding directions), which is shown in Figure 6:
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> adj.dist.mean.sq <- adjust.data.by.covariates(formula= ~ Sex+AntibioticUse,

data=throat.meta,

dist=dist.mean.sq, square.dist=FALSE)$adj.dist

> PCs <- eigen(adj.dist.mean.sq, symmetric=TRUE)

> color = rep("blue", length(throat.meta$SmokingStatus))

> w = which(throat.meta$SmokingStatus=="Smoker")

> color[w] = "red"

> plot(PCs$vectors[,1], PCs$vectors[,2], xlab="PC1", ylab="PC2",

col=color, main="Smokers vs. non-smokers")

> legend(x="topleft", legend=c("smokers","non-smokers"), pch=c(21,21),

col=c("red","blue"), lty=0)

> ordiellipse(ord=PCs$vectors, groups=factor(throat.meta$SmokingStatus, exclude=c()),

conf=0.9, col=c("blue", "red"))
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Figure 6 Ordination of the throat microbiome samples based on the expected squared Jac-
card distance over rarefaction, which has the effects of gender and antibiotic use removed by
projection. The ellipses are 90% confidence limits.

Then, we illustrate the other three methods.

### PERMANOVA-F(R)

> res.perm.F <- permanovaFL(throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=82955,

dist.method="jaccard", binary=TRUE, # parameters

n.rarefy=5) # for requesting PERMANOVA-F(5)
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> res.perm.F$p.permanova

rarefy1 rarefy2 rarefy3 rarefy4 rarefy5

cov1 0.00159968 0.00159968 0.00259948 0.00239952 0.00239952

cov2 0.91560000 0.93460000 0.86560000 0.88860000 0.89240000

### PERMANOVA-D2(R)

> dist.avg.D2 <- avgdist.squared(throat.otu.tab5, dist.method="jaccard", n.rarefy=100)

> res.perm.D2 <- permanovaFL(dist.avg.D2 | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=82955,

square.dist=FALSE) # parameter for requesting PERMANOVA-D2(100)

> res.perm.D2$p.permanova

cov1 cov2

0.00339932 0.92720000

### PERMANOVA-D(R)

> dist.avg.D <- as.matrix(avgdist(x=throat.otu.tab5, sample=min(rowSums(throat.otu.tab5)),

dmethod="jaccard", tree=NULL, iterations=100, binary=TRUE))

> res.perm.D <- permanovaFL(dist.avg.D | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=82955)

> res.perm.D$p.permanova

cov1 cov2

0.0029994 0.9202000
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8 Analyzing correlated samples with complex (restricted)

permutations

The functions ldm and permanovaFL accommodate a variety of complex (i.e., restricted) per-
mutations through the permute package. For unclustered data, perm.within.type governs the
type of permutation. The default value, permute.within.type="free" performs unrestricted per-
mutations, equivalent to using sample(n.obs, replace=FALSE). Other allowed values are “series”,
“grid” and “none”. If perm.within.type="grid" is specified, then values of perm.within.nrow and
perm.within.ncol must be specified. For more information on the effect of choosing perm.within.type

to a value other than “free”, see the documentation for the permute package. If desired, permuta-
tions can also be restricted to groups of observations by specifying strata=strata.id, which restricts
permutations to those that preserve the value of strata.id for each observation.

The functions ldm and permanovaFL use the complex (restricted) permutation schemes to an-
alyze clustered data that preserves the sample correlations. Clusters in the data are identified by
having a common value of cluster.id. There are two parameters that control the type of per-
mutations possible with clustered data: perm.between.type and perm.within.type. The allow-
able values of perm.within.type are as described in the previous paragraph, while the allowable
values of perm.between.type are “free”, “none” and “series”. To permute only within clusters,
choose perm.between.type="none" and perm.within.type="free". To permute only across clus-
ters, choose perm.between.type="free" and perm.within.type="none". To permute both within
and between clusters, set both to “free”. Note that if perm.between.type has a value other than
“none” then all clusters must have the same size. Permutations of clustered data may be further
restricted to preserve the value of strata.id by specifying strata=strata.id. Note that the value
of strata.id must be the same for each member of a single cluster. If there are only a few observed
cluster sizes, permuting within strata defined by cluster size is a way to analyze unbalanced, clustered
data.

Users may also use the how function in the permute package to manually specify a restricted
permutation. This is accomplished by setting how=how.var where how.var is an object of class how
as produced by the permute package. Any permutation scheme allowed by permute can be specified
in this way.

8.1 Example dataset 2: simulated data of repeated samples

To illustrate the analysis of repeated samples (i.e., samples within a cluster have the same value for
the covariates of interest) using ldm and permanovaFL, we simulated a dataset based on the relative
abundances and overdispersion observed in the throat microbiome data. It consists of data from 50
individuals, each of whom contributed 2 samples. Twenty-five individuals were cases (Y.between =
1), and the remaining ones were controls (Y.between = 0). Metadata include the case-control status
(Y.between), a confounding covariate (X.between), and a unique individual identifier (ID). We use
“between” in covariate names to indicate that these covariates are between-individual variables. See
Hu and Satten (2020) for more details in generating this dataset. We first prepare this dataset:

> library(LDM)

> data(sim.otu.tab) # zero columns have been excluded

> data(sim.meta)

>

> otu_presence = which(colSums(sim.otu.tab>0)>=5) # optionally remove OTUs that occur
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> sim.otu.tab5 = sim.otu.tab[,otu_presence] # in fewer than 5 individuals

> dim(sim.otu.tab5)

[1] 100 593

The OTU table contains 593 OTUs after excluding OTUs having less than 5 presence in the sample.
To test the association of the microbiome with the case-control status Y.between while controlling
for the confounder X.between, while also accounting for the clustering structure (so that the case-
control status is always the same for all samples from the same individual), we specify cluster.id=ID,
perm.between.type="free", and perm.within.type="none" and use the code:

> res.ldm.repeated <- ldm(formula=sim.otu.tab5 | X.between ~ Y.between,

data=sim.meta, seed=34794,

cluster.id=ID, # parameters for requesting analysis of

perm.within.type="none", perm.between.type="free") # repeated samples

> res.ldm.repeated$n.perm.completed

[1] 61000

> res.ldm.repeated$global.tests.stopped

[1] FALSE

> res.ldm.repeated$otu.tests.stopped

[1] TRUE

> res.ldm.repeated$p.global.omni

[1] 0.00019996

> res.ldm.repeated$detected.otu.omni

$cov1

[1] "1583" "3067" "5522" "5443" "2122" "2334" "2245" "2213" "330" "2434" "3619" "4036"

[13] "922" "3954" "3108" "799" "3957" "4599" "596"

> length(res.ldm.repeated$detected.otu.omni[[1]])

[1] 19

With 61000 permutations, the OTU-specific tests have met the stopping criterion and detect 19
OTUs at the nominal FDR 0.1. The global test has not met the stopping criterion of obtaining at
least 100 rejections with 5000 permutations; however, we know the p-value is going to be very small
around 0.00019996 and there is no need to add more permutations to make it more precise.

The syntax of using permanovaFL for this type of data is very similar to ldm, except that the
method for calculating the distance matrix (dist.method) should be specified:

> res.perm.repeated <- permanovaFL(formula=sim.otu.tab5 | X.between ~ Y.between,

data=sim.meta, dist.method="bray", seed=34794,

cluster.id=ID, # parameters for requesting analysis of

perm.within.type="none", perm.between.type="free") # repeated samples

> res.perm.repeated$p.permanova

[1] 0.00019996

8.2 Example dataset 3: simulated data of matched sets of samples

To illustrate the analysis of matched sets of samples (i.e., samples within a cluster have different
values for the covariates of interest) using ldm and permanovaFL, we added to the dataset in Section
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8.1 a within-individual case-control status Y.within and a within-individual covariate X.within. In
particular, Y.within is always 0 for one sample and 1 for the other sample from the same individual.
To test the association of the microbiome with the case-control status Y.within while controlling
for the potential confounder X.within, while also accounting for the clustering structure (so that
the case-control status is always different for the two samples from the same individual), we specify
cluster.id=ID, perm.between.type="none", and perm.within.type="free". As described in Zhu
et al. (2020), the indicator variables for individuals should be adjusted as covariates to constrain the
test within individuals.

> res.ldm.matched <- ldm(formula=sim.otu.tab5 | as.factor(ID) + X.within ~ Y.within,

data=sim.meta, seed=34794,

cluster.id=ID, # parameters for requesting analysis of

perm.within.type="free", perm.between.type="none") # matched sets

> res.ldm.matched$n.perm.completed

[1] 71000

> res.ldm.matched$global.tests.stopped

[1] TRUE

> res.ldm.matched$otu.tests.stopped

[1] TRUE

> res.ldm.matched$p.global.omni

[1] 0.435

> res.ldm.matched$detected.otu.omni

$cov1

character(0)

With 71000 permutations, both the global test and OTU-specific tests have met the stopping criterion.
The global test is non-significant with p-value 0.435 and the OTU-specific tests detect 0 significant
OTUs.

Again, the syntax of using permanovaFL for this type of data is very similar to ldm, except that
the method for calculating the distance matrix (dist.method) should be specified:

> res.perm.matched <- permanovaFL(formula=sim.otu.tab5 | as.factor(ID) + X.within ~ Y.within,

data=sim.meta, dist.method="bray", seed=34794,

cluster.id=ID, # parameters for requesting analysis of

perm.within.type="free", perm.between.type="none") # matched sets

> res.perm.matched$p.permanova

[1] 0.3275

8.3 Testing between- and within-individual variables simultaneously

We also demonstrate the case in which you set both perm.within.type="free" and perm.between.type="free".
Note that we don’t adjust for the ID variable as a confounder.

res.ldm.perm.both <- ldm(formula=sim.otu.tab5 | X.within ~ Y.between + Y.within,

data=sim.meta, seed=34794,

cluster.id=ID,

perm.within.type="free", perm.between.type="free")
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> res.ldm.perm.both$n.perm.completed

[1] 360000

> res.ldm.perm.both$p.global.omni

cov1 cov2

0.00019996 0.34440000

> res.ldm.perm.both$detected.otu.omni

$cov1

[1] "1583" "3227" "3600" "2860" "1981" "153" "5443" "2122" "3344" "2334" "1795" "4448"

"2245" "2794" "2213" "1311"

[17] "330" "3216" "2434" "2707" "5042" "3619" "4036" "922" "1585" "3954" "3108" "2535"

"1671" "3957" "4599" "596"

$cov2

character(0)
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9 Omnibus test using ldm (LDM-omni3) and permanovaFL

Because LDM applied to relative abundance data works well when associated taxa are abundant
and LDM applied to presence-absence data works well when associated taxa are relatively rare,
we further developed another omnibus test, LDM-omni3 (Zhu et al., 2022); LDM-omni3 allows
simultaneous consideration of data at the three taxon scales (i.e., relative abundance, arcsin-root
transformed relative-abundance, and presence-absence), thus offering optimal power across scenarios
with different association mechanisms. In a similar spirit, we extended the permanovaFL function to
provide an omnibus test that allows simultaneous consideration of multiple distance matrices.

We use the same data and fit the same model as in Section 6, i.e., testing the association of
the throat microbiome with smoking status and then test the association with pack per year after
removing the association with smoking status, both tests accounting for the confounding effects of sex
and antibiotic use. Now we request the new omnibus test, LDM-omni3 by setting test.omni3=TRUE

(default is FALSE).

> res.ldm.omni3 <- ldm(formula=throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=67817, n.cores=4,

test.omni3=TRUE) # parameter for requesting LDM-omni3

> res.ldm.omni3$n.perm.completed

[1] 130000

We print the global p-values of the LDM-omni3 test, one for each of the two covariates, as well as
the global p-values of all other global tests that are related to LDM-omni3. The test named with
"freq" is based on the relative abundance data for all taxa; the test named with "tran" is based on
the arcsin-root transformed relative abundance data for all taxa; the test named with "pa" is based
on the presence-absence data for all taxa; the test named with "harmonic" is based on the harmonic
mean p-value combination method to combine taxon-specific p-values p.otu.omni3, each of which
is from an omnibus test at the taxon combining results from all three data scales; the test named
with "fisher" is based on Fisher’s p-value combination method to combine p.otu.omni3; the test
named with "omni" is an omnibus test combining results of two global tests: "freq" and "tran";
finally, the LDM-omni3 test, named with "omni3" is an omnibus test combing results of five global
tests: "freq", "tran", "pa", "harmonic", and "fisher".

> tab.global <- cbind(res.ldm.omni3$p.global.freq, res.ldm.omni3$p.global.tran,

res.ldm.omni3$p.global.pa,

res.ldm.omni3$p.global.harmonic, res.ldm.omni3$p.global.fisher,

res.ldm.omni3$p.global.omni, res.ldm.omni3$p.global.omni3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

cov1 0.00939812 0.00219956 0.00859828 0.01619676 0.01619676 0.00339932 0.00539892

cov2 0.87100000 0.61560000 0.75900000 0.23200000 0.23200000 0.70120000 0.46340000

The p-values of the five contributing tests for LDM-omni3 give us information on which data scale
has driven the significance of the "omni3" test. Here, the "tran" test has the smallest p-values
0.00219956 for testing cov1 and seems to be the driver for the small "omni3" p-value 0.00539892.

Next, we print the number of detected OTUs for cov1 by the LDM-omni3 test, as well as the
numbers of detected OTUs for cov1 by all other taxon-specific tests, i.e., the test based on the relative
abundance data for each taxon ("freq"), the test based on the arcsin-root relative abundance data
for each taxon ("tran"), the test based on the presence-absence data for each taxon ("pa"), the
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omnibus test LDM-omni ("omni") that combines the results of the "freq" and "tran" tests at each
taxon, and the new omnibus test LDM-omni3 ("omni3") that combines the results of the "freq",
"tran", and "pa" tests at each taxon.

> tab.otu <- c(length(res.ldm.omni3$detected.otu.freq[[1]]),

length(res.ldm.omni3$detected.otu.tran[[1]]),

length(res.ldm.omni3$detected.otu.pa[[1]]),

length(res.ldm.omni3$detected.otu.omni[[1]]),

length(res.ldm.omni3$detected.otu.omni3[[1]]))

[1] 4 3 3 4 7

Note that both omnibus tests (LDM-omni and LDM-omni3) are available for all analyses that are
supported by LDM, including the mediation analysis (Section 10).

To obtain an omnibus test based on permanovaFL, one way is to specify multiple distance metrics
in dist.method:

> res.perm.omni <- permanovaFL(throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=82955, n.cores=4,

dist.method=c("bray", "jaccard")) # requesting the omnibus test

> res.perm.omni$p.permanova.omni

cov1 cov2

0.0029994 0.7826000

> res.perm.omni$p.permanova

cov1 cov2

dist1 0.00219956 0.6450

dist2 0.00179964 0.8968

We obtained the p-values for the omnibus test in output p.permanova.omni, and we also obtained
the p-values for each distance metric from p.permanova which provide insights into which distance
has driven the significance of the omnibus p-value.

Note that the implementation above assumes no rarefaction for calculating any distance. The
implementation below is to first calculate the distance matrices externally, which can utilize our
function jaccard.mean or unifrac.mean to calculate the expected Jaccard or unweighted UniFrac
distance over all rarefactions, and then provide these distance matrices through dist.list. Since
these distance matrices have already been squared, we turn off square.dist.

> dist.J.sq <- jaccard.mean( throat.otu.tab5 )$jac.mean.sq.o2

> dist.BC = as.matrix(vegdist(x=throat.otu.tab5 / rowSums(throat.otu.tab5), method="bray"))

> dist.BC.sq = dist.BC^2

> res.perm.omni.1 <- permanovaFL(throat.otu.tab5|(Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=82955, n.cores=4,

dist.list=list(dist.J.sq, dist.BC.sq), # parameters for

square.dist=FALSE) # requesting omnibus test

> res.perm.omni.1$p.permanova.omni

cov1 cov2

0.00359928 0.76040000

> res.perm.omni.1$p.permanova
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cov1 cov2

dist1 0.00319936 0.9234

dist2 0.00219956 0.6450
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10 Mediation analysis of the microbiome using ldm (LDM-

med) and permanovaFL

In Yue and Hu (2021), we propose a new approach to mediation analysis of the microbiome
based on inverse regression that regresses the microbiome data at each taxon on the exposure and
the exposure-adjusted outcome. Then the p-values for testing the coefficients of the exposure and
the exposure-adjusted outcome are used to test mediation at both the community and individual
taxon levels. This approach fits nicely into our LDM framework, so our new method LDM-med,
implemented in the LDM framework, enjoys all the features of the LDM, e.g., allowing an arbitrary
number of taxa to be tested simultaneously, supporting continuous, discrete, or multivariate exposures
and outcomes (including survival outcomes; see Section 11) as well as adjustment of confounders,
and offering analysis of the taxon data at the relative abundance or presence-absence scale. In a
similar spirit, we also extended permanovaFL to provide a global test of microbial mediation at the
community level.

To call the mediation analysis using ldm, the formula takes the specific form

otu.table ~ exposure + outcome

or most generally

otu.table | (set of confounders) ~ (set of exposures) + (set of outcomes),

in which there should be exactly two terms on the right hand side of the regression, corresponding
to the exposure(s) and the outcome(s), the outcome(s) must appear after the exposure(s), and the
covariates or confounders that we wish to adjust must appear after “|”.

We have simulated an outcome variable Outcome and added it to the metadata of the throat
microbiome dataset. Here we test the mediation effects of the microbiome, at both the community
level and the OTU level, that mediate the effect of SmokingStatus on Outcome. This can be easily
achieved by setting test.mediation=TRUE.

> res.ldm.med <- ldm(formula = throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus+Outcome,

data=throat.meta, seed=67817, n.cores=4,

test.mediation=TRUE) # parameter for requesting

# mediation analysis (LDM-med)

> res.ldm.med$med.p.global.omni

[1] 0.00079992

> res.ldm.med$med.detected.otu.omni

[1] "2434" "171" "4703"

We found that the microbiome played a significant mediation role and OTUs “2434”, “171”, and
“4703” are the specific mediators. From the same run, we can obtain the bivariate associations be-
tween SmokingStatus and the microbiome, the microbiome and Outcome conditional on SmokingStatus,
both at the community level and the OTU levels. Both bivariate associations have very small p-values,
which corroborate with the existence of mediation effects.

> res.ldm.med$p.global.omni

cov1 cov2

0.00089991 0.00569943
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> res.ldm.med$p.otu.omni[,res.ldm.med$med.detected.otu.omni]

2434 171 4703

cov1 0.0002499931 0.0067333333 0.0003055471

cov2 0.0003199872 0.0000399984 0.0002799888

Now we perform the new omnibus test, LDM-omni3, for the mediation of the microbiome by
adding test.omni3=TRUE:

> res.ldm.med.omni3 <- ldm(throat.otu.tab5 | (Sex+AntibioticUse) ~ SmokingStatus + Outcome,

data=throat.meta, seed=67817, n.cores=4,

test.mediation=TRUE, # parameter for requesting mediation analysis

test.omni3=TRUE) # parameter for requesting LDM-omni3

> tab.global <- c(res.ldm.med.omni3$med.p.global.freq,

res.ldm.med.omni3$med.p.global.tran,

res.ldm.med.omni3$med.p.global.pa,

res.ldm.med.omni3$med.p.global.harmonic,

res.ldm.med.omni3$med.p.global.fisher,

res.ldm.med.omni3$med.p.global.omni,

res.ldm.med.omni3$med.p.global.omni3)

[1] 0.00049995 0.00439956 0.1587 0.00109989 0.9932 0.00079992 0.00119988

> tab.otu <- c(length(res.ldm.med.omni3$med.detected.otu.freq),

length(res.ldm.med.omni3$med.detected.otu.tran),

length(res.ldm.med.omni3$med.detected.otu.pa),

length(res.ldm.med.omni3$med.detected.otu.omni),

length(res.ldm.med.omni3$med.detected.otu.omni3))

[1] 2 3 0 3 2

Finally, we perform mediation analysis within the PERMANOVA framework using permanovaFL,
considering two distance matrices Bray-Curtis and Jaccard and the omnibus test:

> res.perm.med.omni <- permanovaFL(throat.otu.tab5|(Sex+AntibioticUse) ~

SmokingStatus + Outcome,

data=throat.meta, seed=82955, n.cores=4,

test.mediation=TRUE, # parameter for requesting mediation analysis

dist.list=list(dist.J.sq, dist.BC.sq), # parameters for

square.dist=FALSE) # requesting omnibus test

> res.perm.med.omni$med.p.permanova

dist1 dist2

0.01739652 0.00459908

> res.perm.med.omni$med.p.permanova.omni

[1] 0.00819836
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11 Testing associations with censored survival times us-

ing ldm and permanovaFL

In Hu et al. (2022), we extended the LDM to test survival outcomes. We propose to use the
Martingale residuals or the deviance residuals obtained from the Cox model as continuous covariates
in the LDM; the Cox model should regress the survival outcome on non-microbiome covariates that
are related to the survival outcome. We further construct tests that combine the results of analyzing
each set of residuals separately. We also extended PERMANOVA to handle survival outcomes in a
similar manner.

We have simulated censored survival times (Time, Status) and added them to the metadata
of the throat microbiome data. Here we test microbiome associations with the survival outcome,
adjusting for sex and antibiotic use. Because sex and antibiotic are also risk factors for the survival
outcome, we adjust for them in both the Cox model and the LDM. First we prepare the Martingale
and deviance residuals by fitting the Cox model:

> library(survival)

> cox.fit = coxph(Surv(Time, Status) ~Sex+AntibioticUse , data=throat.meta)

> resid.Martingale = residuals(cox.fit, type="martingale")

> resid.deviance = residuals(cox.fit, type="deviance")

Then we run ldm with one residual variable specified in the formula and the other specified in
other.surv.resid. We also request the omnibus test LDM-omni3.

> res.ldm.surv <- ldm(formula=throat.otu.tab5 | (Sex+AntibioticUse) ~ resid.Martingale,

data=throat.meta, seed=67817, n.cores=4,

test.omni3=TRUE, # requesting LDM-omni3

other.surv.resid=resid.deviance) # requesting analysis of

# the other residual and the combination test

> res.ldm.surv$p.global.omni3

cov1

0.01259748

> res.ldm.surv$p.global.omni3.OR # results from "other.surv.resid"

cov1

0.02

> res.ldm.surv$p.global.omni3.com # combination test of both residuals

cov1

0.0226

> res.ldm.surv$detected.otu.omni3

$cov1

[1] "2434"

> res.ldm.surv$detected.otu.omni3.OR

$cov1

[1] "2434" "1490" "3538"

> res.ldm.surv$detected.otu.omni3.com

$cov1

[1] "2434" "3538"

Similarly, we run permanovaFL with other.surv.resid:
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> res.perm.surv.omni <- permanovaFL(throat.otu.tab5 | (Sex+AntibioticUse) ~ resid.Martingale,

data=throat.meta, seed=82955, n.cores=4,

dist.method=c("bray", "jaccard")) # requesting the omnibus test

other.surv.resid=resid.deviance, # requesting analysis of

# other residual and the combination test

> res.perm.surv.omni$p.permanova

dist1 dist2

0.0069986 0.1328000

> res.perm.surv.omni$p.permanova.OR

dist1 dist2

0.00779844 0.16860000

> res.perm.surv.omni$p.permanova.com

dist1 dist2

0.01039792 0.17180000

> res.perm.surv.omni$p.permanova.omni

[1] 0.01159768

> res.perm.surv.omni$p.permanova.omni.OR

[1] 0.01359728

> res.perm.surv.omni$p.permanova.omni.com

[1] 0.0169966

Finally, we illustrate how to perform mediation analysis with a censored survival time as the
outcome. We consider smoking status as the exposure and sex and antibiotic use as confounders.
We first run ldm and request the omnibus test LDM-omni3:

> res.ldm.surv.med <- ldm(throat.otu.tab5|(Sex+AntibioticUse) ~ SmokingStatus+resid.Martingale,

data=throat.meta, seed=67817, n.cores=4,

other.surv.resid=resid.deviance, # other residual and combination test

test.mediation=TRUE, # mediation analysis

test.omni3=TRUE) # LDM-omni3

> res.ldm.surv.med$med.p.global.omni3.com

[1] 0.0237

> res.ldm.surv.med$med.detected.otu.omni3.com

character(0)

Then, we run permanovaFL for the same mediation model with a survival outcome and obtain
omnibus tests by specify "bray" and "jaccard" in dist.method. We also consider one rarefaction
and averaged results over two rarefactions.

> res.perm.surv.med <- permanovaFL(formula=throat.otu.tab5 | (Sex+AntibioticUse) ~

SmokingStatus + resid.Martingale,

data=throat.meta, seed=82955, n.cores=4,

other.surv.resid=resid.deviance, # other residual and combination test

test.mediation=TRUE, # mediation analysis

dist.method=c("bray", "jaccard"), # the omnibus test

n.rarefy=2) # rarefaction

> res.perm.surv.med$med.p.permanova.com
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rarefy1 rarefy2

dist1 0.0934 0.1022

dist2 0.5310 0.4890

> res.perm.surv.med$med.p.permanova.omni.com

rarefy1 rarefy2

0.1410 0.1502

Alternatively, we provide the externally calculated distance matrices to permanovaFL and turn
off square.dist:

> res.perm.surv.med1 <- permanovaFL(throat.otu.tab5|(Sex+AntibioticUse) ~

SmokingStatus+resid.Martingale,

data=throat.meta, seed=82955, n.cores=4,

other.surv.resid=resid.deviance, # other residual and combination test

test.mediation=TRUE, # mediation analysis

dist.list=list(dist.J.sq, dist.BC.sq), # parameters for

square.dist=FALSE) # requesting omnibus test

> res.perm.surv.med1$med.p.permanova.omni.com

0.1788
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12 Compositional analysis by fitting LDM to clr data

(LDM-clr)

In Hu and Satten (2023), we extended LDM to compositional analysis by fitting linear models to
centered-log-ratio-transformed (clr) taxa count data, which is referred to as LDM-clr. As LDM-clr
is implemented within the existing LDM program, it enjoys all the features supported by LDM,
including a compositional analysis of differential abundance at both the taxon and community levels,
while allowing for a wide range of covariates and study designs for either association or mediation
analysis.

To call the compositional analysis using ldm, we first derive the clr data from the taxa count
data:

> log.throat.otu.tab5 = log(throat.otu.tab5 + 0.5) # adding peudocount 0.5 to all counts

> throat.otu.tab5.clr = log.throat.otu.tab5 - rowMeans(log.throat.otu.tab5)

> dist_identity = 1-diag(nrow(throat.otu.tab5)) # replace the default Bray-Curtis distance

Then, we fit a linear model to the clr data and call LDM-clr by setting comp.anal=TRUE and
comp.anal.adjust="median" or "mode", retaining the input data scale freq.scale.only=TRUE,
suppressing row scaling scale.otu.table=FALSE, and avoiding calculating the default Bray-Curtis
distance (which does not allow negative input values):

> res.ldm.clr <- ldm(formula = throat.otu.tab5.clr | (Sex+AntibioticUse) ~ SmokingStatus,

data=throat.meta, seed=67817, n.cores=4,

comp.anal=TRUE, comp.anal.adjust="median", # parameter for requesting

freq.scale.only=TRUE, scale.otu.table=FALSE, # compositional analysis

dist = dist_identity) # (LDM-clr)

> res.ldm.clr$n.perm.completed

[1] 30000

> res.ldm.clr$p.global.freq

[1] 0.0029994

> res.ldm.clr$detected.otu.freq

$cov1

[1] "2434" "4363" "411" "3954"

We can also perform compositional analysis of the mediation effects of the microbiome by setting
test.mediation=TRUE, and using the SmokingStatus as the exposure and Outcome as the outcome:

> res.ldm.clr.med <- ldm(formula = throat.otu.tab5.clr | (Sex+AntibioticUse) ~

SmokingStatus + Outcome,

data=throat.meta, seed=67817, n.cores=4,

comp.anal=TRUE, comp.anal.adjust="median",

freq.scale.only=TRUE, scale.otu.table=FALSE,

dist = dist_identity,

test.mediation=TRUE)

> res.ldm.clr.med$med.p.global.freq

[1] 0.00629937

> res.ldm.clr.med$med.detected.otu.freq

[1] "171" "3954"
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13 Miscellaneous

13.1 Simple linear regression with permutation using ldm

In essence, ldm performs a simple linear regression with permutation-based inference at each
taxon. In fact, ldm can be generally applied to data (in addition to the OTU table data) that do not
follow normal distributions. In particular, ldm can be applied to analyze an alpha diversity measure
or the relative abundance of a particular OTU in association of covariates of interest. Note that both
measurements are univariate variables. To this end, we should suppress scale.otu.table and turn
on freq.scale.only.

### The alpha diversity for richness

> richness = matrix(rowSums(throat.otu.tab5>0), ncol=1)

> res.alpha.ldm <- ldm(richness | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=67817,

scale.otu.table=FALSE, freq.scale.only=TRUE) # parameters for

# requesting a simple linear regression

> res.alpha.ldm$p.global.freq

cov1 cov2

0.528 0.896

### The relative abundance of one OTU

> one.otu = throat.otu.tab5[,5,drop=FALSE]/rowSums(throat.otu.tab5)

> res.1otu.ldm <- ldm(one.otu | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=67817,

scale.otu.table=FALSE, freq.scale.only=TRUE)

> res.1otu.ldm$p.global.freq

cov1 cov2

0.909 0.959

13.2 Turning off the sequential stop rule

For the OTU-specific tests, you can turn off the sequential stop rule of Sandve et al. (2011)
by setting both n.rej.stop and n.perm.max to the same, fixed number of permutations you want.
Using the previous univariate analysis as an example:

### The relative abundance of one OTU

> res.1otu.ldm.fix <- ldm(one.otu | (Sex+AntibioticUse) ~ SmokingStatus+PackYears,

data=throat.meta, seed=67817,

scale.otu.table=FALSE, freq.scale.only=TRUE,

n.rej.stop=50000, n.perm.max=50000) # set permutation number to 50000

> res.1otu.ldm.fix$n.perm.completed

[1] 50000

> res.1otu.ldm.fix$p.global.freq

cov1 cov2

0.9163217 0.9658407
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